| sexsm | R Documentation | 
Simple exponential smoothing with fixed or optimised parameters.
sexsm(data,h=10,w=NULL,init=c("mean","naive"),
      cost=c("mar","msr","mae","mse"),init.opt=c(TRUE,FALSE),
      outplot=c(FALSE,TRUE),opt.on=c(FALSE,TRUE),
      na.rm=c(FALSE,TRUE))
data | 
 Intermittent demand time series.  | 
h | 
 Forecast horizon.  | 
w | 
 Smoothing parameter. If w == NULL then parameter is optimised.  | 
init | 
 Initial values for demand and intervals. This can be: 1. x - Numeric value for the initial level; 2. "naive" - Initial value is a naive forecast; 3. "mean" - Initial value is equal to the average of data.  | 
cost | 
 Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error.  | 
init.opt | 
 If init.opt==TRUE then initial values are optimised.  | 
outplot | 
 If TRUE a plot of the forecast is provided.  | 
opt.on | 
 This is meant to use only by the optimisation function. When opt.on is TRUE then no checks on inputs are performed.  | 
na.rm | 
 A logical value indicating whether NA values should be remove using the method.  | 
model | 
 Type of model fitted.  | 
frc.in | 
 In-sample demand.  | 
frc.out | 
 Out-of-sample demand.  | 
alpha | 
 Smoothing parameter.  | 
initial | 
 Initialisation value.  | 
Nikolaos Kourentzes
Optimisation of the method described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. doi: 10.1016/j.ijpe.2014.06.007.
crost, tsb, crost.ma.
sexsm(ts.data1,outplot=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.