sexsm | R Documentation |
Simple exponential smoothing with fixed or optimised parameters.
sexsm(data,h=10,w=NULL,init=c("mean","naive"), cost=c("mar","msr","mae","mse"),init.opt=c(TRUE,FALSE), outplot=c(FALSE,TRUE),opt.on=c(FALSE,TRUE), na.rm=c(FALSE,TRUE))
data |
Intermittent demand time series. |
h |
Forecast horizon. |
w |
Smoothing parameter. If w == NULL then parameter is optimised. |
init |
Initial values for demand and intervals. This can be: 1. x - Numeric value for the initial level; 2. "naive" - Initial value is a naive forecast; 3. "mean" - Initial value is equal to the average of data. |
cost |
Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error. |
init.opt |
If init.opt==TRUE then initial values are optimised. |
outplot |
If TRUE a plot of the forecast is provided. |
opt.on |
This is meant to use only by the optimisation function. When opt.on is TRUE then no checks on inputs are performed. |
na.rm |
A logical value indicating whether NA values should be remove using the method. |
model |
Type of model fitted. |
frc.in |
In-sample demand. |
frc.out |
Out-of-sample demand. |
alpha |
Smoothing parameter. |
initial |
Initialisation value. |
Nikolaos Kourentzes
Optimisation of the method described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. doi: 10.1016/j.ijpe.2014.06.007.
crost
, tsb
, crost.ma
.
sexsm(ts.data1,outplot=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.