View source: R/ts_aug_wormhole.R
| ts_aug_wormhole | R Documentation |
Generate augmented windows by selectively replacing lag terms with older lagged values, creating plausible alternative trajectories.
ts_aug_wormhole()
This combinatorial replacement preserves overall scale while introducing temporal permutations of lag content.
A ts_aug_wormhole object.
Q. Wen et al. (2021). Time Series Data Augmentation for Deep Learning: A Survey. IJCAI Workshop on Time Series.
# Wormhole augmentation replaces some lags with older values
# Load package and example dataset
library(daltoolbox)
data(tsd)
# Convert to sliding windows and preview
xw <- ts_data(tsd$y, 10)
ts_head(xw)
# Apply wormhole augmentation and inspect augmented windows
augment <- ts_aug_wormhole()
augment <- fit(augment, xw)
xa <- transform(augment, xw)
ts_head(xa)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.