sim_daily | R Documentation |
Simulate a daily seasonal series as described in Ollech (2021).
sim_daily(
N,
sd = 5,
moving = TRUE,
week_sd = NA,
month_sd = NA,
year_sd = NA,
week_change_sd = NA,
month_change_sd = NA,
year_change_sd = NA,
innovations_sd = 1,
sa_sd = NA,
model = list(order = c(3, 1, 1), ma = 0.5, ar = c(0.2, -0.4, 0.1)),
beta_tau7 = 0.01,
beta_tau31 = 0,
beta_tau365 = 0.2,
start = c(2020, 1),
multiplicative = TRUE,
extra_smooth = FALSE,
calendar = list(which = "Easter", from = -2, to = 2),
outlier = NULL,
timewarping = FALSE,
as_index = FALSE
)
N |
length in years |
sd |
Standard deviation for all seasonal factors |
moving |
Is the seasonal pattern allowed to change over time |
week_sd |
Standard deviation of the seasonal factor for day-of-the-week |
month_sd |
Standard deviation of the seasonal factor for day-of-the-month |
year_sd |
Standard deviation of the seasonal factor for day-of-the-year |
week_change_sd |
Standard deviation of shock to seasonal factor |
month_change_sd |
Standard deviation of shock to seasonal factor |
year_change_sd |
Standard deviation of shock to seasonal factor |
innovations_sd |
Standard deviation of the innovations used in the non-seasonal regarima model |
sa_sd |
Standard deviation of the non-seasonal time series |
model |
Model for non-seasonal time series. A list. |
beta_tau7 |
Persistance wrt to one year/cycle before of the seasonal change for day-of-the-week |
beta_tau31 |
Persistance wrt to one year/cycle before of the seasonal change for day-of-the-month |
beta_tau365 |
Persistance wrt to one year/cycle before of the seasonal change for day-of-the-year |
start |
Start date of output time series |
multiplicative |
Boolean. Should multiplicative seasonal factors be simulated |
extra_smooth |
Boolean. Should the seasonal factors be smooth on a period-by-period basis |
calendar |
Parameters for calendar effect, a list, see sim_calendar |
outlier |
Parameters for outlier effect, a list, see sim_outlier |
timewarping |
Should timewarping be used to obtain the day-of-the-month factors |
as_index |
Shall series be made to look like an index (i.e. shall values be relative to reference year = second year) |
Standard deviation of the seasonal factor is in percent if a multiplicative time series model is assumed. Otherwise it is in unitless. Using a non-seasonal ARIMA model for the initialization of the seasonal factor does not impact the seasonality of the time series. It can just make it easier for human eyes to grasp the seasonal nature of the series. The definition of the ar and ma parameter needs to be inline with the chosen model. The parameters that can be set for calendar and outlier are those defined in sim_outlier and sim_calendar.
Multiple simulated daily time series of class xts including:
The original series
The original series without calendar and seasonal effects
The day-of-the-week effect
The day-of-the-month effect
The day-of-the-year effect
The calendar effects
The outlier effects
Daniel Ollech
Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1515/jtse-2020-0028")}
x=sim_daily(5, sd=10, multiplicative=TRUE, outlier=list(k=5, type=c("AO", "LS")))
ts.plot(x[,1])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.