Nothing
#' Object resulting from the fit of a tvcure model using function 'tvcure'.
#'
#' An object returned by the \code{\link{tvcure}} function: this is a list
#' with various components related to the fit of such a model.
#'
#' @return A \code{tvcure_object} is a list with following elements:
#' \itemize{
#' \item \code{formula1} : A formula describing the linear predictor in the long-term (cure) survival (or quantum) submodel.
#' \item \code{formula2} : A formula describing the linear predictor in the short-term (cure) survival (or timing) submodel.
#' \item \code{baseline} : Baseline ("S0" or "F0") used to specify the dependence of the cumulative hazard dynamics on covariates.
#' \item \code{id} : the <id> of the unit associated to the data in a given line in the data frame.
#' \item \code{time} : the integer time at which the observations are reported. For a given unit, it should be a sequence of CONSECUTIVE integers starting at 1 for the first observation.
#' \item \code{event} : a sequence of 0-1 event indicators. For the lines corresponding to a given unit, it starts with 0 values concluded by a 0 in case of right-censoring or by a 1 if the event is observed at the end of the follow-up.
#' \item \code{regr1} : List returned by \code{\link{DesignFormula}} when evaluated on \code{formula1}.
#' \item \code{regr2} : List returned by \code{\link{DesignFormula}} when evaluated on \code{formula2}.
#' \item \code{K0} : Number of B-splines used to specify \eqn{\log f_0(t)}.
#' \item \code{fit} : A list containing different elements describing the fitted tvcure model:
#' \itemize{
#' \item \code{llik} : Log likelihood value of the fitted tvcure model at convergence.
#' \item \code{lpen} : Log of the penalized joint posterior at convergence.
#' \item \code{dev} : Deviance of the fitted tvcure model at convergence.
#' \item \code{mu.ij} : Expected value \eqn{\mu_{ij}=h_p(t_{ij}|z(t_{ij}),x(t_{ij}))} for the event indicator of unit \eqn{i} at time \eqn{t_{ij}}.
#' \item \code{res} : Standardized residual \eqn{(d_{ij}-\mu_{ij})/\sqrt{\mu_{ij}}} for unit \eqn{i} at time \eqn{t_{ij}} where \eqn{\mu_{ij}=h_p(t_{ij}|z(t_{ij}),x(t_{ij}))} and \eqn{d_{ij}} is the event indicator.
#' \item \code{phi} : Vector of length \eqn{K_0} containing the estimated B-splines coefficients in \eqn{\log f_0(t)}.
#' \item \code{marginalized} : Marginalization indicator (over penalty parameters) when reporting regression and spline parameter estimates.
#' \item \code{nbeta} : Number of regression and spline parameters in the long-term (cure) survival (or quantum) submodel.
#' \item \code{ci.level} : Selected level for credible intervals.
#' \item \code{beta} : (nbeta x 6) matrix containing the point estimates, standard errors, credible intervals, Z-scores and P-values of the regression and spline parameters in the long-term (cure) survival (or quantum) submodel.
#' \item \code{ngamma} : Number of regression and spline parameters in the short-term (cure) survival (or timing) submodel.
#' \item \code{gamma} : (ngamma x 6) matrix containing the point estimates, standard errors, credible intervals, Z-scores and P-values of the regression and spline parameters in the short-term (cure) survival (or timing) submodel.
#' \item \code{gam} : ngamma-vector with the point estimates of the regression and spline parameters in the short-term (cure) survival (or timing) submodel.
#' \item \code{grad.beta} : Gradient of the log joint posterior of <beta>, the regression and spline parameters in the long-term (cure) survival (or quantum) submodel.
#' \item \code{Hes.beta} : Hessian of the log joint posterior of <beta>.
#' \item \code{Hes.beta0} : Hessian of the log joint posterior of <beta> (with the roughness penalty part omitted).
#' \item \code{grad.gamma} : Gradient of the log joint posterior of <gamma>, the regression and spline parameters in the short-term (cure) survival (or timing) submodel.
#' \item \code{Hes.gamma} : Hessian of the log joint posterior of <gamma>.
#' \item \code{Hes.gamma0} : Hessian of the log joint posterior of <gamma> (with the roughness penalty part omitted).
#' \item \code{Mcal.1} : Hessian of the log joint posterior of the spline parameters in <beta> conditionally on the non-penalized parameters.
#' \item \code{Mcal.2} : Hessian of the log joint posterior of the spline parameters in <gamma> conditionally on the non-penalized parameters.
#' \item \code{Hes.betgam} : (nbeta x ngamma) matrix with the cross derivatives of the log joint posterior of (<beta>,<gamma>).
#' \item \code{grad.regr} : Gradient of the log joint posterior of <beta,gamma>.
#' \item \code{Hes.regr} : Hessian of the log joint posterior of <beta,gamma>.
#' \item \code{Hes.regr0} : Hessian of the log joint posterior of <beta,gamma> (with the roughness penalty part omitted).
#' \item \code{grad.phi} : Gradient of the log joint posterior of <phi>, the spline parameters in \eqn{\log f_0(t)}.
#' \item \code{Hes.phi} : Hessian of the log joint posterior of <phi>.
#' \item \code{Hes.phi0} : Hessian of the log joint posterior of <phi> (with the roughness penalty part omitted).
#' \item \code{T} : Follow-up time after which a unit is declared cured in the absence of a past event.
#' \item \code{t.grid} : Grid of discrete time values on (1,T): 1,...,T.
#' \item \code{f0.grid} : Estimated values for \eqn{f_0(t)} on \code{t.grid}.
#' \item \code{F0.grid} : Estimated values for \eqn{F_0(t)} on \code{t.grid}.
#' \item \code{S0.grid} : Estimated values for \eqn{S_0(t)} on \code{t.grid}.
#' \item \code{dlf0.grid} : (ngrid x length(phi)) matrix with the jth line containing the gradient of \eqn{\log f_0(t_j)} w.r.t. <phi>.
#' \item \code{dlF0.grid} : (ngrid x length(phi)) matrix with the jth line containing the gradient of \eqn{\log F_0(t_j)} w.r.t. <phi>.
#' \item \code{dlS0.grid} : (ngrid x length(phi)) matrix with the jth line containing the gradient of \eqn{\log S_0(t_j)} w.r.t. <phi>.
#' \item \code{k.ref} : Index of the reference component in <phi> set to 0.0.
#' \item \code{a, b} : Hyperparameters of the Gamma(a,b) prior for the penalty parameters of the additive terms.
#' \item \code{criterion} : Criterion used to assess convergence of the estimation procedure.
#' \item \code{grad.psi} : Gradient of the log joint posterior of <phi[-k.ref]>, i.e. the spline parameters in \eqn{\log f_0(t)} with the fixed reference component omitted.
#' \item \code{Hes.psi0} : Hessian of the log joint posterior of <phi[-k.ref]> (with the roughness penalty part omitted).
#' \item \code{Hes.psi} : Hessian of the log joint posterior of <phi[-k.ref]>.
#' \item \code{tau} : Selected value for the penalty parameter \eqn{\tau} tuning the smoothness of \eqn{\log f_0(t)}.
#' \item \code{pen.order0} : Penalty order for the P-splines used to specify \eqn{\log f_0(t)}.
#' \item \code{logscale} : Logical: when TRUE, select \eqn{\lambda_1} or \eqn{\lambda_2} by maximizing \eqn{p(\log(\lambda_k)|D)}, maximize \eqn{p(\lambda_k|D)} otherwise. (Default= TRUE).
#' \item \code{lambda1} : Selected values for the penalty parameters \eqn{\lambda_1} tuning the smoothness of the additive terms in the long-term (cure) survival (or quantum) submodel.
#' \item \code{pen.order1} : Penalty order for the P-splines in the long-term survival (or quantum) submodel.
#' \item \code{lambda2} : Selected values for the penalty parameters \eqn{\lambda_2} tuning the smoothness of the additive terms in the short-term (cure) survival (or timing) submodel.
#' \item \code{pen.order2} : Penalty order for the P-splines in the short-term survival (or timing) submodel.
#' \item \code{tau.method} : Method used to calculate the posterior mode of \eqn{p(\tau_0|{\cal D})}.
#' \item \code{lambda.method} : Method used to select the penalty parameters of the additive terms in the long-term survival (or quantum) submodel.
#' \item \code{ED1} : Effective degrees of freedom for each of the additive terms in the long-term survival (or quantum) submodel, with the selected statistical test for significance and its P-value.
#' \item \code{ED2} : Effective degrees of freedom for each of the additive terms in the short-term survival (or timing) submodel, with the selected statistical test for significance and its P-value.
#' \item \code{ED1.Tr} : Effective degrees of freedom for each of the additive terms in the long-term survival (or quantum) submodel, with Wood's statistical test for significance and its P-value.
#' \item \code{ED2.Tr} : Effective degrees of freedom for each of the additive terms in the short-term survival (or timing) submodel, with Wood's statistical test for significance and its P-value.
#' \item \code{ED1.Chi2} : Effective degrees of freedom for each of the additive terms in the long-term survival (or quantum) submodel, with a Chi-square test for significance and its P-value.
#' \item \code{ED2.Chi2} : Effective degrees of freedom for each of the additive terms in the short-term survival (or timing) submodel, with a Chi-square test for significance and its P-value.
#' \item \code{nobs} : Total number of observations.
#' \item \code{n} : Total number of units or subjects.
#' \item \code{d} : Total number of observed events.
#' \item \code{ED1.tot} : Total effective degrees of freedom for the long-term survival (or quantum) submodel.
#' \item \code{ED2.tot} : Total effective degrees of freedom for the short-term survival (or timing) submodel.
#' \item \code{ED.tot} : Total effective degrees of freedom for the tvcure model.
#' \item \code{AIC} : Akaike information criterion for the fitted model with a penalty calculated using the total effective degrees of freedom, -2log(L) + 2*ED.tot, larger values being preferred during model selection.
#' \item \code{BIC} : Bayesian (Schwarz) information criterion for the fitted model with a penalty calculated using the total effective degrees of freedom and the total number of observed events, -2log(L) + log(d)*ED.tot, smaller values being preferred during model selection.
#' \item \code{levidence} : Log-evidence of the fitted model, larger values being preferred during model selection.
#' \item \code{iter} : Number of iterations required to achieve convergence.
#' \item \code{elapsed.time} : Total duration (in seconds) of the estimation procedure.
#' }
#' \item \code{call} : Function call.
#' \item \code{converged} : Binary convergence status.
#' \item \code{logLik} : Log-likelihood of the fitted model.
#' }
#'
#' @author Philippe Lambert \email{p.lambert@uliege.be}
#' @references Lambert, P. and Kreyenfeld, M. (2025).
#' Time-varying exogenous covariates with frequently changing values in double additive cure survival model: an application to fertility.
#' \emph{Journal of the Royal Statistical Society, Series A}. <doi:10.1093/jrsssa/qnaf035>
#'
#' @seealso \code{\link{tvcure}}, \code{\link{print.tvcure}}, \code{\link{plot.tvcure}}
#'
#' @name tvcure.object
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.