Nothing
#' @title Normalization constant of von Mises - Fisher distribution.
#'
#' @description \code{CpvMF} returns the normalization constant of von Mises - Fisher density.
#'
#' @details The probability density function of the von Mises - Fisher distribution is defined by :
#' \deqn{f(z|theta) = C_p(|theta|)\exp{(z theta)}}
#' \eqn{|theta|} is the intensity parameter and \eqn{\frac{theta}{|theta|}} the mean directional parameter. The normalization constant \eqn{C_p()} depends
#' on the Bessel function of the first kind. See more details \href{https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution}{here}.
#'
#' @param p as sphere dimension.
#' @param k as the intensity parameter.
#' @return the normalization constant.
#' @examples
#'
#' CpvMF(2,3.1)
#'
#' @keywords distribution
#' @keywords directional statistics
#' @keywords coordinates
#' @keywords simulations
#' @seealso
#' \code{\link{rvMF}} and \code{\link{dvMF}}
#'
#' @references
#' Wood, A. T. (1994). Simulation of the von Mises Fisher distribution. \emph{Communications in statistics-simulation and computation}, 23(1), 157-164. \doi{10.1080/03610919408813161}.
#' @references
#' Hornik, K., & Grun, B. (2014). \pkg{movMF}: An \R package for fitting mixtures of von Mises-Fisher distributions. \emph{Journal of Statistical Software}, 58(10), 1-31. \doi{10.18637/jss.v058.i10}.
#' @importFrom Rcpp sourceCpp
#' @export
CpvMF <- function(p, k){
return(exp(logCpvMFcpp(p,k)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.