Description References See Also

The package provides estimations of the covariance of estimated parameters in joint
mean-covariance models, which is fitted in 'jmcm' package. Two methods are available.
`bootcovjmcm`

calculates the covariance estimation via a bootstrap based method. `covjmcm`

uses explicit formula, i.e. the inverse of the estimated Fisher's information, to calculate the covariance estimation.
The bootstrap method may need large number of replications and thus may be time consuming.
The explicit formula in the second method is asymptotically correct, and thus is valid only when the sample size is large.

[1] Pan J, Pan Y (2017). "jmcm: An R Package for Joint Mean-Covariance Modeling of Longitudinal Data." Journal of Statistical Software, 82(9), 1–29.

[2] Pourahmadi, M., "Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix," Biometrika 87(2), 425–435 (2000).

[3] M. Maadooliat, M. Pourahmadi and J. Z. Huang, "Robust estimation of the correlation matrix of longitudinal data", Statistics and Computing 23, 17-28, (2013).

[4] W. Zhang, C. Leng, and C. Y. Tang(2015), "A joint modelling approach for longitudinal studies," Journal of the Royal Statistical Society. Series B. 77, 219-238.

`covjmcm`

and `bootcovjmcm`

for more details and examples.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.