summary | R Documentation |
'summary' methods for class '"varest"', '"svarest"' and '"svecest"'.
## S3 method for class 'varest'
summary(object, equations = NULL, ...)
## S3 method for class 'varsum'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'svarest'
summary(object, ...)
## S3 method for class 'svarsum'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'svecest'
summary(object, ...)
## S3 method for class 'svecsum'
print(x, digits = max(3, getOption("digits") - 3), ...)
object |
Object of class ‘ |
equations |
Character vector of endogenous variable names for
which summary results should be returned. The default is |
x |
Object with class attribute ‘varsum’, ‘svarsum’. |
digits |
the number of significant digits to use when printing. |
signif.stars |
logical. If 'TRUE', ‘significance stars’ are printed for each coefficient. |
... |
further arguments passed to or from other methods. |
Returns either a list with class attribute varsum
which contains the
following elements:
names |
Character vector with the names of the endogenous correlation matrix of VAR residuals. |
logLik |
Numeric, value of log Likelihood. |
obs |
Integer, sample size. |
roots |
Vector, roots of the characteristic polynomial. |
type |
Character vector, deterministic regressors included in VAR: |
call |
Call, the initial call to |
Or a list with class attribute svarsum
which contains the
following elements:
type |
Character, the type of SVAR-model. |
A |
Matrix, estimated coefficients for A matrix. |
B |
Matrix, estimated coefficients for B matrix. |
Ase |
Matrix, standard errors for A matrix. |
Bse |
Matrix, standard errors for B matrix. |
LRIM |
Matrix, long-run impact coefficients for |
Sigma.U |
Matrix, variance/covariance of reduced form residuals. |
logLik |
Numeric, value of log-Likelihood. |
LR |
htest, LR result of over-identification test. |
obs |
Integer, number of observations used. |
opt |
List, result of |
iter |
Integer, the count of iterations. |
call |
Call, the call to |
Or a list with class attribute svecsum
which contains the
following elements:
type |
Character, the type of SVEC-model. |
SR |
Matrix, contemporaneous impact matrix. |
LR |
Matrix, long-run impact matrix. |
SRse |
Matrix, standard errors for SR matrix. |
LRse |
Matrix, standard errors for LR matrix. |
Sigma.U |
Matrix, variance/covariance of reduced form residuals. |
logLik |
Numeric, value of log-Likelihood. |
LRover |
htest, LR result of over-identification test. |
obs |
Integer, number of observations used. |
r |
Integer, co-integration rank of VECM. |
iter |
Integer, the count of iterations. |
call |
Call, the call to |
Bernhard Pfaff
VAR
, SVAR
, SVEC
data(Canada)
## summary-method for varest
var.2c <- VAR(Canada, p = 2 , type = "const")
summary(var.2c)
## summary-method for svarest
amat <- diag(4)
diag(amat) <- NA
amat[2, 1] <- NA
amat[4, 1] <- NA
## Estimation method scoring
svar.a <- SVAR(x = var.2c, estmethod = "scoring", Amat = amat, Bmat = NULL,
max.iter = 100, maxls = 1000, conv.crit = 1.0e-8)
summary(svar.a)
## summary-method for svecest
vecm <- ca.jo(Canada[, c("prod", "e", "U", "rw")], type = "trace",
ecdet = "trend", K = 3, spec = "transitory")
SR <- matrix(NA, nrow = 4, ncol = 4)
SR[4, 2] <- 0
LR <- matrix(NA, nrow = 4, ncol = 4)
LR[1, 2:4] <- 0
LR[2:4, 4] <- 0
svec.b <- SVEC(vecm, LR = LR, SR = SR, r = 1, lrtest = FALSE, boot =
FALSE)
summary(svec.b)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.