| VASIM | R Documentation |
The function VASIM() defines the Vasicek distribution under
a mean-based parameterization for use as a
gamlss.family object in GAMLSS models. In this formulation,
\mu represents the mean of the distribution and
\sigma is a shape parameter. The functions dVASIM,
pVASIM, qVASIM, and rVASIM provide the density,
distribution, quantile, and random generation functions,
respectively.
dVASIM(x, mu, sigma, log = FALSE)
pVASIM(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
qVASIM(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rVASIM(n, mu, sigma)
VASIM(mu.link = "logit", sigma.link = "logit")
x, q |
Vector of quantiles in the interval |
mu |
Vector of mean values. |
sigma |
Vector of shape parameter values. |
log, log.p |
Logical; if |
lower.tail |
Logical; if |
p |
Vector of probabilities. |
n |
Number of observations. |
mu.link |
Link function for the |
sigma.link |
Link function for the |
The probability density function is given by
f(x \mid \mu, \sigma) =
\sqrt{\frac{1-\sigma}{\sigma}}
\exp\left\{\frac{1}{2}\left[\Phi^{-1}(x)^2 -
\left(\frac{\Phi^{-1}(x)\sqrt{1-\sigma}-\Phi^{-1}(\mu)}
{\sqrt{\sigma}}\right)^2\right]\right\}.
The cumulative distribution function is
F(x \mid \mu, \sigma) =
\Phi\left(\frac{\Phi^{-1}(x)\sqrt{1-\sigma}-\Phi^{-1}(\mu)}
{\sqrt{\sigma}}\right).
The quantile function is
Q(\tau \mid \mu, \sigma) =
\Phi\left(\frac{\Phi^{-1}(\mu)+\Phi^{-1}(\tau)\sqrt{\sigma}}
{\sqrt{1-\sigma}}\right).
VASIM() returns a gamlss.family object.
In the VASIM() parameterization, \mu corresponds to the
mean of the distribution and \sigma is a shape parameter.
Josmar Mazucheli jmazucheli@gmail.com
Bruna Alves pg402900@uem.br
Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
Mazucheli, J., Alves, B., Korkmaz, M.Ç., and Leiva, V. (2022). Vasicek quantile and mean regression models for bounded data: New formulation, mathematical derivations, and numerical applications. Mathematics, 10, 1389. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/math10091389")}
Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54(3), 507–554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019). Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R. Chapman and Hall/CRC.
Stasinopoulos, D. M. and Rigby, R. A. (2007). Generalized additive models for location, scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1–45.
Stasinopoulos, D. M., Rigby, R. A., Heller, G., Voudouris, V., and De Bastiani, F. (2017). Flexible Regression and Smoothing: Using GAMLSS in R. Chapman and Hall/CRC.
Vasicek, O. A. (1987). Probability of loss on loan portfolio. KMV Corporation.
Vasicek, O. A. (2002). The distribution of loan portfolio value. Risk, 15(12), 1–10.
VASIQ, pmvnorm
set.seed(123)
x <- rVASIM(n = 1000, mu = 0.5, sigma = 0.69)
hist(x, probability = TRUE, main = "Vasicek distribution")
## Not run:
library(gamlss)
data <- data.frame(y = x[1:100])
fit <- gamlss(y ~ 1, data = data,
family = VASIM(mu.link = "logit",
sigma.link = "logit"))
summary(fit)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.