meta.ave.cor.gen | R Documentation |
Computes the estimate, standard error, and confidence interval for an average correlation. Any type of correlation can be used (e.g., Pearson, Spearman, semipartial, factor correlation, Gamma coefficient, Somers d coefficient, tetrachoric, point-biserial, biserial, etc.).
meta.ave.cor.gen(alpha, cor, se, bystudy = TRUE)
alpha |
alpha level for 1-alpha confidence |
cor |
vector of estimated correlations |
se |
vector of standard errors |
bystudy |
logical to also return each study estimate (TRUE) or not |
Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:
Estimate - estimated effect size
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Bonett2008avcmeta
cor <- c(.396, .454, .409, .502, .350)
se <- c(.104, .064, .058, .107, .086)
meta.ave.cor.gen(.05, cor, se, bystudy = TRUE)
# Should return:
# Estimate SE LL UL
# Average 0.4222 0.03853362 0.3438560 0.4947070
# Study 1 0.3960 0.10400000 0.1753200 0.5787904
# Study 2 0.4540 0.06400000 0.3200675 0.5701415
# Study 3 0.4090 0.05800000 0.2893856 0.5160375
# Study 4 0.5020 0.10700000 0.2651183 0.6817343
# Study 5 0.3500 0.08600000 0.1716402 0.5061435
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.