viking | R Documentation |
viking
is the state-space estimation realized by Viking,
generalizing the Kalman Filter to variance uncertainty.
viking(
X,
y,
theta0,
P0,
hata0,
s0,
hatb0,
Sigma0,
n_iter = 2,
mc = 10,
rho_a = 0,
rho_b = 0,
learn_sigma = TRUE,
learn_Q = TRUE,
K = NULL,
mode = "diagonal",
thresh = TRUE,
phi = logt,
phi1 = logt1,
phi2 = logt2
)
X |
the explanatory variables |
y |
the time series |
theta0 |
initial |
P0 |
initial |
hata0 |
initial |
s0 |
initial |
hatb0 |
initial |
Sigma0 |
initial |
n_iter |
(optional, default |
mc |
(optional, default |
rho_a |
(optional, default |
rho_b |
(optional, default |
learn_sigma |
(optional, default |
learn_Q |
(optional, default |
K |
(optional, default |
mode |
(optional, default |
thresh |
(optional, default |
phi |
(optional, default |
phi1 |
(optional, default |
phi2 |
(optional, default |
a list composed of the evolving value of all the parameters:
theta_arr, P_arr, q_arr, hata_arr, s_arr, hatb_arr, Sigma_arr
J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking. <arXiv:2104.10777>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.