histoplot | R Documentation |
Produce histogram plot(s) of the given (grouped) values with enhanced annotation and colour per group. Includes customisation of colours for each aspect of the histogram, boxplot, and separate histograms. This supports input of data as a list or formula, being backwards compatible with histoplot
(0.2) and taking input in a formula as used for boxplot
.
Interpreting the columns (or rows) of a matrix as different groups, draw a boxplot for each.
## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)
## S3 method for class 'list'
histoplot(x, ...)
## S3 method for class 'data.frame'
histoplot(x, ...)
## S3 method for class 'matrix'
histoplot(x, use.cols = TRUE, ...)
## S3 method for class 'formula'
histoplot(
formula,
data = NULL,
...,
subset,
na.action = NULL,
add = FALSE,
ann = !add,
horizontal = FALSE,
side = "both",
xlab = mklab(y_var = horizontal),
ylab = mklab(y_var = !horizontal),
names = NULL,
drop = FALSE,
sep = ".",
lex.order = FALSE
)
## Default S3 method:
histoplot(
x,
...,
data = NULL,
breaks = "Sturges",
xlim = NULL,
ylim = NULL,
names = NULL,
horizontal = FALSE,
col = "grey50",
border = par()$fg,
lty = 1,
lwd = 1,
rectCol = par()$fg,
lineCol = par()$fg,
pchMed = 19,
colMed = "white",
colMed2 = "grey 75",
at,
add = FALSE,
wex = 1,
drawRect = TRUE,
areaEqual = FALSE,
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
asp = NA,
main = "",
sub = "",
xlab = NA,
ylab = NA,
line = NA,
outer = FALSE,
xlog = NA,
ylog = NA,
adj = NA,
ann = NA,
ask = NA,
bg = NA,
bty = NA,
cex = NA,
cex.axis = NA,
cex.lab = NA,
cex.main = NA,
cex.names = NULL,
cex.sub = NA,
cin = NA,
col.axis = NA,
col.lab = NA,
col.main = NA,
col.sub = NA,
cra = NA,
crt = NA,
csi = NA,
cxy = NA,
din = NA,
err = NA,
family = NA,
fg = NA,
fig = NA,
fin = NA,
font = NA,
font.axis = NA,
font.lab = NA,
font.main = NA,
font.sub = NA,
lab = NA,
las = NA,
lend = NA,
lheight = NA,
ljoin = NA,
lmitre = NA,
mai = NA,
mar = NA,
mex = NA,
mfcol = NA,
mfg = NA,
mfrow = NA,
mgp = NA,
mkh = NA,
new = NA,
oma = NA,
omd = NA,
omi = NA,
page = NA,
pch = NA,
pin = NA,
plt = NA,
ps = NA,
pty = NA,
smo = NA,
srt = NA,
tck = NA,
tcl = NA,
usr = NA,
xaxp = NA,
xaxs = NA,
xaxt = NA,
xpd = NA,
yaxp = NA,
yaxs = NA,
yaxt = NA,
ylbias = NA,
log = "",
logLab = c(1, 2, 5),
na.action = NULL,
na.rm = T,
side = "both"
)
x |
a numeric matrix. |
... |
Further arguments to |
use.cols |
logical indicating if columns (by default) or rows (use.cols = FALSE) should be plotted. |
formula |
a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor). |
data |
a data.frame (or list) from which the variables in formula should be taken. |
subset |
an optional vector specifying a subset of observations to be used for plotting. |
na.action |
a function which indicates what should happen when the data contain NAs. The default is to ignore missing values in either the response or the group. |
add |
logical. if FALSE (default) a new plot is created |
horizontal |
logical. To use horizontal or vertical histograms. Note that log scale can only be used on the x-axis for horizontal histograms, and on the y-axis otherwise. |
side |
defaults to "both". Assigning "left" or "right" enables one sided plotting of histograms. May be applied as a scalar across all groups. |
names |
one label, or a vector of labels for the data must match the number of data given |
drop , sep , lex.order |
defines groups to plot from formula, passed to |
breaks |
the breaks for the density estimator, as explained in hist |
xlim , ylim |
numeric vectors of length 2, giving the x and y coordinates ranges. |
col |
Graphical parameter for fill colour of the histogram(s) polygon. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary. |
border |
Graphical parameters for the colour of the histogram border passed to lines. NA for no border. If border is a vector, it specifies the colour per histogram, and colours are reused if necessary. |
lty , lwd |
Graphical parameters for the histogram passed to lines and polygon |
rectCol |
Graphical parameters to control fill colour of the box. NA for no fill colour. If col is a vector, it specifies the colour per histogram, and colours are reused if necessary. |
lineCol |
Graphical parameters to control colour of the box outline and whiskers. NA for no border. If lineCol is a vector, it specifies the colour per histogram, and colours are reused if necessary. |
pchMed |
Graphical parameters to control shape of the median point. If pchMed is a vector, it specifies the shape per histogram. |
colMed , colMed2 |
Graphical parameters to control colour of the median point. If colMed is a vector, it specifies the colour per histogram. colMed specifies the fill colour in all cases unless pchMed is 21:25 in which case colMed is the border colour and colMed2 is the fill colour. |
at |
position of each histogram. Default to 1:n |
wex |
relative expansion of the histogram. If wex is a vector, it specifies the area/width size per histogram and sizes are reused if necessary. |
drawRect |
logical. The box is drawn if TRUE. |
areaEqual |
logical. Density plots checked for equal area if TRUE. wex must be scalar, relative widths of histograms depend on area. |
axes , frame.plot , panel.first , panel.last , asp , line , outer , adj , ann , ask , bg , bty , cin , col.axis , col.lab , col.main , col.sub , cra , crt , csi , cxy , din , err , family , fg , fig , fin , font , font.axis , font.lab , font.main , font.sub , lab , las , lend , lheight , ljoin , lmitre , mai , mar , mex , mfcol , mfg , mfrow , mgp , mkh , new , oma , omd , omi , page , pch , pin , plt , ps , pty , smo , srt , tck , tcl , usr , xaxp , xaxs , xaxt , xpd , yaxp , yaxs , ylbias |
Arguments to be passed to methods, such as graphical parameters (see |
main , sub , xlab , ylab |
graphical parameters passed to plot. |
ylog , xlog |
A logical value (see log in |
cex |
A numerical value giving the amount by which plotting text should be magnified relative to the default. |
cex.axis |
The magnification to be used for y axis annotation relative to the current setting of cex. |
cex.lab |
The magnification to be used for x and y labels relative to the current setting of cex. |
cex.main |
The magnification to be used for main titles relative to the current setting of cex. |
cex.names |
The magnification to be used for x axis annotation relative to the current setting of cex. Takes the value of cex.axis if not given. |
cex.sub |
The magnification to be used for sub-titles relative to the current setting of cex. |
yaxt |
A character which specifies the y axis type. Specifying "n" suppresses plotting. |
log |
Logarithmic scale if log = "y" or TRUE. Invokes ylog = TRUE. If horizontal is TRUE then invokes xlog = TRUE. |
logLab |
Increments for labelling y-axis on log-scale, defaults to numbers starting with 1, 2, 5, and 10. |
na.rm |
logical value indicating whether NA values should be stripped before the computation proceeds. Defaults to TRUE. |
# box- vs histogram-plot
par(mfrow=c(2,1))
mu<-2
si<-0.6
bimodal<-c(rnorm(1000,-mu,si),rnorm(1000,mu,si))
uniform<-runif(2000,-4,4)
normal<-rnorm(2000,0,3)
histoplot(bimodal,uniform,normal)
boxplot(bimodal,uniform,normal)
# add to an existing plot
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, xlim=c(-5,5), ylim=c(-5,5))
histoplot(x, col="tomato", horizontal=TRUE, at=-4, add=TRUE,lty=2, rectCol="gray")
histoplot(y, col="cyan", horizontal=FALSE, at=-4, add=TRUE,lty=2)
# formula input
data("iris")
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length",
col=c("lightgreen", "lightblue", "palevioletred"))
legend("topleft", legend=c("setosa", "versicolor", "virginica"),
fill=c("lightgreen", "lightblue", "palevioletred"), cex = 0.5)
data("diamonds", package = "ggplot2")
palette <- RColorBrewer::brewer.pal(9, "Pastel1")
par(mfrow=c(3, 1))
histoplot(price ~ cut, data = diamonds, las = 1, col = palette)
histoplot(price ~ clarity, data = diamonds, las = 2, col = palette)
histoplot(price ~ color, data = diamonds, las = 2, col = palette)
par(mfrow=c(3, 1))
#generate example data
data_one <- rnorm(100)
data_two <- rnorm(50, 1, 2)
#generate histogram plot with similar functionality to histoplot
histoplot(data_one, data_two, col="magenta")
#note vioplox defaults to a greyscale plot
histoplot(data_one, data_two)
#colours can be customised separately, with axis labels, legends, and titles
histoplot(data_one, data_two, col=c("red","blue"), names=c("data one", "data two"),
main="data histogram", xlab="data class", ylab="data read")
legend("topleft", fill=c("red","blue"), legend=c("data one", "data two"))
#colours can be customised for the histogram fill and border separately
histoplot(data_one, data_two, col="grey85", border="purple", names=c("data one", "data two"),
main="data histogram", xlab="data class", ylab="data read")
#colours can also be customised for the boxplot rectange and lines (border and whiskers)
histoplot(data_one, data_two, col="grey85", rectCol="lightblue", lineCol="blue",
border="purple", names=c("data one", "data two"),
main="data histogram", xlab="data class", ylab="data read")
#these colours can also be customised separately for each histogram
histoplot(data_one, data_two, col=c("skyblue", "plum"), rectCol=c("lightblue", "palevioletred"),
lineCol="blue", border=c("royalblue", "purple"), names=c("data one", "data two"),
main="data histogram", xlab="data class", ylab="data read")
#this applies to any number of histograms, given that colours are provided for each
histoplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5), rbinom(100, 10, 0.4),
col=c("red", "orange", "green", "blue", "violet"),
rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"),
lineCol=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
border=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
names=c("data one", "data two", "data three", "data four", "data five"),
main="data histogram", xlab="data class", ylab="data read")
#The areaEqual parameter scales with width of histograms
#histograms will have equal density area (including missing tails) rather than equal maximum width
histoplot(data_one, data_two, areaEqual=TRUE)
histoplot(data_one, data_two, areaEqual=TRUE,
col=c("skyblue", "plum"), rectCol=c("lightblue", "palevioletred"),
lineCol="blue", border=c("royalblue", "purple"), names=c("data one", "data two"),
main="data histogram", xlab="data class", ylab="data read")
histoplot(data_one, data_two, rnorm(200, 3, 0.5), rpois(200, 2.5), rbinom(100, 10, 0.4),
areaEqual=TRUE, col=c("red", "orange", "green", "blue", "violet"),
rectCol=c("palevioletred", "peachpuff", "lightgreen", "lightblue", "plum"),
lineCol=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
border=c("red4", "orangered", "forestgreen", "royalblue", "mediumorchid"),
names=c("data one", "data two", "data three", "data four", "data five"),
main="data histogram", xlab="data class", ylab="data read")
#To compare multiple groups of histogram densities, it helps to adjust the wex.
dlist1 <- lapply(c(10,20,30,40), function(n) runif(n))
dlist2 <- lapply(c(100,200,300,400), function(n) runif(n))
hscale1 <- sapply(dlist1, function(r){
max(hist(r, plot=FALSE, breaks=seq(0,1,by=.05))$density)})
histoplot(dlist1, side='left', col=grey(.3),
breaks=seq(0,1,by=.05), add=FALSE, pchMed=NA, drawRect=FALSE, border=NA,
wex=hscale1/length(hscale1))
hscale2 <- sapply(dlist2, function(r){
max(hist(r, plot=FALSE, breaks=seq(0,1,by=.05))$density)})
histoplot(dlist2, side='right', col=grey(.7),
breaks=seq(0,1,by=.05), add=TRUE, pchMed=NA, drawRect=FALSE, border=NA,
wex=hscale2/length(hscale2))
#Sometimes, it is helpful to see the raw counts instead.
dvec <- length(unlist(c(dlist1, dlist2)))/4
histoplot(dlist1, side='left', col=grey(.3),
breaks=seq(0,1,by=.05), add=FALSE, pchMed=NA, drawRect=FALSE, border=NA,
wex=sapply(dlist1, length)/dvec*hscale1/length(hscale1))
histoplot(dlist2, side='right', col=grey(.7),
breaks=seq(0,1,by=.05), add=TRUE, pchMed=NA, drawRect=FALSE, border=NA,
wex=sapply(dlist2, length)/dvec*hscale2/length(hscale2))
#It may also benefit some users to pass density and angle arguments to the
# histograms (ultimately rect) and create outer legends
hist(runif(100), density=c(10,20), angle=c(22,90+22) ,col=1)
outer_legend <- function(...) {
opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, 0, 0), mar=c(0, 0, 0, 0), new=TRUE)
on.exit(par(opar))
plot(0, 0, type='n', bty='n', xaxt='n', yaxt='n')
legend(...)
}
outer_legend('topright', pch=15, density=c(10,20), angle=c(22,90+22), col=0, legend=c('Y','N'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.