Nothing
#' Competing models plot
#'
#' Plots the rankings of a series of regression models for viral load or CD4
#' counts
#'
#' @param output A non-ranked viraltab output
#'
#' @returns A plot of ranking models
#' @export
#'
#' @examples
#' \donttest{
#' library(dplyr)
#' library(magrittr)
#' library(baguette)
#' library(kernlab)
#' library(kknn)
#' library(ranger)
#' library(rules)
#' library(glmnet)
#' # Define the function to impute values in the undetectable range
#' set.seed(123)
#' impute_undetectable <- function(column) {
#' ifelse(column <= 40,
#' rexp(sum(column <= 40), rate = 1/13) + 1,
#' column)
#' }
#' # Apply the function to all vl columns using purrr's map_dfc
#' library(viraldomain)
#' data("viral", package = "viraldomain")
#' viral_imputed <- viral %>%
#' mutate(across(starts_with("vl"), ~impute_undetectable(.x)))
#' traindata <- viral_imputed
#' semilla <- 1501
#' target <- "cd_2022"
#' viralvars <- c("vl_2019", "vl_2021", "vl_2022")
#' logbase <- 10
#' pliegues <- 2
#' repeticiones <- 1
#' rejilla <- 1
#' set.seed(123)
#' viraltab(traindata, semilla, target, viralvars, logbase, pliegues,
#' repeticiones, rejilla, rank_output = FALSE) %>% viralvis()
#' }
viralvis <- function(output) {
magrittr::`%>%`(output,
tune::autoplot(
rank_metric = "rmse", # <- how to order models
metric = "rmse", # <- which metric to visualize
select_best = TRUE # <- one point per workflow
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.