Use the color scales in this package to make plots that are pretty, better represent your data, easier to read by those with colorblindness, and print well in gray scale.
Install viridis like any R package:
install.packages("viridis") library(viridis)
For base plots, use the viridis()
function to generate a palette:
library(viridis) knitr::opts_chunk$set(echo = TRUE, fig.retina=2, fig.width=7, fig.height=5)
x <- y <- seq(-8*pi, 8*pi, len = 40) r <- sqrt(outer(x^2, y^2, "+")) filled.contour(cos(r^2)*exp(-r/(2*pi)), axes=FALSE, color.palette=viridis, asp=1)
For ggplot, use scale_color_viridis()
and scale_fill_viridis()
:
library(ggplot2) ggplot(data.frame(x = rnorm(10000), y = rnorm(10000)), aes(x = x, y = y)) + geom_hex() + coord_fixed() + scale_fill_viridis() + theme_bw()
viridis
, and its companion
package viridisLite
provide a series of color maps that are designed to improve graph readability
for readers with common forms of color blindness and/or color vision deficiency.
The color maps are also perceptually-uniform, both in regular form and also when
converted to black-and-white for printing.
These color maps are designed to be:
viridisLite
provides the base functions for generating the color maps in base
R
. The package is meant to be as lightweight and dependency-free as possible
for maximum compatibility with all the R
ecosystem. viridis
provides additional functionalities, in particular bindings for ggplot2
.
The package contains eight color scales: "viridis", the primary choice, and five alternatives with similar properties - "magma", "plasma", "inferno", "civids", "mako", and "rocket" -, and a rainbow color map - "turbo".
The color maps viridis
, magma
, inferno
, and plasma
were created by
Stéfan van der Walt (@stefanv) and Nathaniel Smith (@njsmith). If you want to know more about the
science behind the creation of these color maps, you can watch this
presentation of viridis
by their authors at
SciPy 2015.
The color map cividis
is a corrected version of 'viridis', developed by
Jamie R. Nuñez, Christopher R. Anderton, and Ryan S. Renslow, and originally
ported to R
by Marco Sciaini (@msciain). More
info about cividis
can be found in
this paper.
The color maps mako
and rocket
were originally created for the Seaborn
statistical data visualization package for Python. More info about mako
and
rocket
can be found on the
Seaborn
website.
The color map turbo
was developed by Anton Mikhailov to address the
shortcomings of the Jet rainbow color map such as false detail, banding and
color blindness ambiguity. More infor about turbo
can be found
here.
n_col <- 128 img <- function(obj, nam) { image(1:length(obj), 1, as.matrix(1:length(obj)), col=obj, main = nam, ylab = "", xaxt = "n", yaxt = "n", bty = "n") }
library(viridis) library(scales) library(colorspace) library(dichromat)
par(mfrow=c(8, 1), mar=rep(1, 4)) img(rev(viridis(n_col)), "viridis") img(rev(magma(n_col)), "magma") img(rev(plasma(n_col)), "plasma") img(rev(inferno(n_col)), "inferno") img(rev(cividis(n_col)), "cividis") img(rev(mako(n_col)), "mako") img(rev(rocket(n_col)), "rocket") img(rev(turbo(n_col)), "turbo")
Let's compare the viridis and magma scales against these other commonly used sequential color palettes in R:
rainbow.colors
, heat.colors
, cm.colors
par(mfrow=c(7, 1), mar=rep(1, 4)) img(rev(rainbow(n_col)), "rainbow") img(rev(heat.colors(n_col)), "heat") img(rev(seq_gradient_pal(low = "#132B43", high = "#56B1F7", space = "Lab")(seq(0, 1, length=n_col))), "ggplot default") img(gradient_n_pal(brewer_pal(type="seq")(9))(seq(0, 1, length=n_col)), "brewer blues") img(gradient_n_pal(brewer_pal(type="seq", palette = "YlGnBu")(9))(seq(0, 1, length=n_col)), "brewer yellow-green-blue") img(rev(viridis(n_col)), "viridis") img(rev(magma(n_col)), "magma")
It is immediately clear that the "rainbow" palette is not perceptually uniform; there are several "kinks" where the apparent color changes quickly over a short range of values. This is also true, though less so, for the "heat" colors. The other scales are more perceptually uniform, but "viridis" stands out for its large perceptual range. It makes as much use of the available color space as possible while maintaining uniformity.
Now, let's compare these as they might appear under various forms of colorblindness, which can be simulated using the dichromat package:
par(mfrow=c(7, 1), mar=rep(1, 4)) img(dichromat(rev(rainbow(n_col)), "deutan"), "rainbow") img(dichromat(rev(heat.colors(n_col)), "deutan"), "heat") img(dichromat(rev(seq_gradient_pal(low = "#132B43", high = "#56B1F7", space = "Lab")(seq(0, 1, length=n_col))), "deutan"), "ggplot default") img(dichromat(gradient_n_pal(brewer_pal(type="seq")(9))(seq(0, 1, length=n_col)), "deutan"), "brewer blues") img(dichromat(gradient_n_pal(brewer_pal(type="seq", palette = "YlGnBu")(9))(seq(0, 1, length=n_col)), "deutan"), "brewer yellow-green-blue") img(dichromat(rev(viridis(n_col)), "deutan"), "viridis") img(dichromat(rev(magma(n_col)), "deutan"), "magma")
par(mfrow=c(7, 1), mar=rep(1, 4)) img(dichromat(rev(rainbow(n_col)), "protan"), "rainbow") img(dichromat(rev(heat.colors(n_col)), "protan"), "heat") img(dichromat(rev(seq_gradient_pal(low = "#132B43", high = "#56B1F7", space = "Lab")(seq(0, 1, length=n_col))), "protan"), "ggplot default") img(dichromat(gradient_n_pal(brewer_pal(type="seq")(9))(seq(0, 1, length=n_col)), "protan"), "brewer blues") img(dichromat(gradient_n_pal(brewer_pal(type="seq", palette = "YlGnBu")(9))(seq(0, 1, length=n_col)), "protan"), "brewer yellow-green-blue") img(dichromat(rev(viridis(n_col)), "protan"), "viridis") img(dichromat(rev(magma(n_col)), "protan"), "magma")
par(mfrow=c(7, 1), mar=rep(1, 4)) img(dichromat(rev(rainbow(n_col)), "tritan"), "rainbow") img(dichromat(rev(heat.colors(n_col)), "tritan"), "heat") img(dichromat(rev(seq_gradient_pal(low = "#132B43", high = "#56B1F7", space = "Lab")(seq(0, 1, length=n_col))), "tritan"), "ggplot default") img(dichromat(gradient_n_pal(brewer_pal(type="seq")(9))(seq(0, 1, length=n_col)), "tritan"), "brewer blues") img(dichromat(gradient_n_pal(brewer_pal(type="seq", palette = "YlGnBu")(9))(seq(0, 1, length=n_col)), "tritan"), "brewer yellow-green-blue") img(dichromat(rev(viridis(n_col)), "tritan"), "viridis") img(dichromat(rev(magma(n_col)), "tritan"), "magma")
par(mfrow=c(7, 1), mar=rep(1, 4)) img(desaturate(rev(rainbow(n_col))), "rainbow") img(desaturate(rev(heat.colors(n_col))), "heat") img(desaturate(rev(seq_gradient_pal(low = "#132B43", high = "#56B1F7", space = "Lab")(seq(0, 1, length=n_col)))), "ggplot default") img(desaturate(gradient_n_pal(brewer_pal(type="seq")(9))(seq(0, 1, length=n_col))), "brewer blues") img(desaturate(gradient_n_pal(brewer_pal(type="seq", palette = "YlGnBu")(9))(seq(0, 1, length=n_col))), "brewer yellow-green-blue") img(desaturate(rev(viridis(n_col))), "viridis") img(desaturate(rev(magma(n_col))), "magma")
We can see that in these cases, "rainbow" is quite problematic - it is not perceptually consistent across its range. "Heat" washes out at bright colors, as do the brewer scales to a lesser extent. The ggplot scale does not wash out, but it has a low perceptual range - there's not much contrast between low and high values. The "viridis" and "magma" scales do better - they cover a wide perceptual range in brightness in brightness and blue-yellow, and do not rely as much on red-green contrast. They do less well under tritanopia (blue-blindness), but this is an extrememly rare form of colorblindness.
The viridis()
function produces the viridis
color scale. You can choose
the other color scale options using the option
parameter or the convenience
functions magma()
, plasma()
, inferno()
, cividis()
, mako()
, rocket
(),
and
turbo()`.
Here the inferno()
scale is used for a raster of U.S. max temperature:
library(terra) library(httr) par(mfrow=c(1,1), mar=rep(0.5, 4)) temp_raster <- "http://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20150219_float.tif" try(GET(temp_raster, write_disk("us.tmax_nohads_ll_20150219_float.tif")), silent=TRUE) us <- rast("us.tmax_nohads_ll_20150219_float.tif") us <- project(us, y="+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs") image(us, col=inferno(256), asp=1, axes=FALSE, xaxs="i", xaxt='n', yaxt='n', ann=FALSE)
The package also contains color scale functions for ggplot
plots: scale_color_viridis()
and scale_fill_viridis()
. As with viridis()
,
you can use the other scales with the option
argument in the ggplot
scales.
Here the "magma" scale is used for a cloropleth map of U.S. unemployment:
library(maps) library(mapproj) data(unemp, package = "viridis") county_df <- map_data("county", projection = "albers", parameters = c(39, 45)) names(county_df) <- c("long", "lat", "group", "order", "state_name", "county") county_df$state <- state.abb[match(county_df$state_name, tolower(state.name))] county_df$state_name <- NULL state_df <- map_data("state", projection = "albers", parameters = c(39, 45)) choropleth <- merge(county_df, unemp, by = c("state", "county")) choropleth <- choropleth[order(choropleth$order), ] ggplot(choropleth, aes(long, lat, group = group)) + geom_polygon(aes(fill = rate), colour = alpha("white", 1 / 2), linewidth = 0.2) + geom_polygon(data = state_df, colour = "white", fill = NA) + coord_fixed() + theme_minimal() + ggtitle("US unemployment rate by county") + theme(axis.line = element_blank(), axis.text = element_blank(), axis.ticks = element_blank(), axis.title = element_blank()) + scale_fill_viridis(option="magma")
The ggplot functions also can be used for discrete scales with the argument
discrete=TRUE
.
p <- ggplot(mtcars, aes(wt, mpg)) p + geom_point(size=4, aes(colour = factor(cyl))) + scale_color_viridis(discrete=TRUE) + theme_bw()
Here are some examples of viridis being used in the wild:
James Curley uses viridis for matrix plots (Code):
Christopher Moore created these contour plots of potential in a dynamic plankton-consumer model:
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.