# Setup chunk knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, fig.width = 7.2, fig.height = 5 ) options(rmarkdown.html_vignette.check_title = FALSE)
In this vignette, we explain how to customise the visualisation of tables and plots. The vignette reviews the structure of the .yml files that define styles, and demonstrates how to create and apply custom styles. It also shows how to style tables and plots programmatically, without the need to create a .yml file.
library(visOmopResults) library(here) library(gt) library(ggplot2) library(dplyr) library(officer)
The package currently includes two built-in styles for tables and plots. Styles are defined using .yml files. To list the available styles, use:
tableStyle() plotStyle()
.ymlThe package contains two built-in styles: "default" and "darwin". The .yml files for these styles can be found here.
.yml structureWe use the "darwin" style as an example. The code chunk below shows the structure of its .yml file:
library(yaml) theme <- read_yaml(file = here("inst/brand/darwin.yml")) cat("```yaml\n", as.yaml(theme), "```", sep = "")
The .yml structure can be divided into four main sections:
background and foreground colors used when a plot/table section does not override them.border-color and border-width, or override settings per table section. Table sections include: header, header-name, header-level, column-name, group-label, title, subtitle, and body. For each section you can set properties such as background-color, text-color, text-bold, align, font-size, border-color, and border-width.Each plot and table element follows a style hierarchy. If a value isn’t specified at the most specific level, it inherits from higher-level entries; if none are defined, the default ggplot2 (for plots) or the default for the specific table type is used. The table below shows the priority order for common plot and table options.
tibble( "type" = "Plot", "Part" = c("Background color", "Header (facet) color", "Header (facet) text color", "Header (facet) text bold", "Border color", "Grid color", "Axis color", "Legend position", "Font family", "Font size"), "Option 1" = c("defaults:visOmopResults:plot:background-color", "defaults:visOmopResults:plot:header-color", "defaults:visOmopResults:plot:header-text-color", "defaults:visOmopResults:plot:header-text-bold", "defaults:visOmopResults:plot:border-color", "defaults:visOmopResults:plot:grid-major-color", "defaults:visOmopResults:plot:axis-color", "defaults:visOmopResults:plot:legend-position", "defaults:visOmopResults:plot:font_family", "defaults:visOmopResults:plot:font_size"), "Option 2" = c("color:background", "color:foreground", "-", "color:foreground", "-", "color:foreground", "-", "-", "typography:base:family", "defaults:visOmopResults:plot:font_size"), "Option 3" = c(rep("-", 9), "typography:base:size") ) |> bind_rows( tibble( "type" = "Table section", "Part" = c("Background color", "Text bold", "Text color", "Text align", "Font size", "Font family", "Border color", "Border width"), "Option 1" = c("defaults:visOmopResults:table:[section_name]:background-color", "defaults:visOmopResults:table:[section_name]:text-bold", "defaults:visOmopResults:table:[section_name]:text-color", "defaults:visOmopResults:table:[section_name]:align", "defaults:visOmopResults:table:[section_name]:font-size", "defaults:visOmopResults:table:[section_name]:font-family", "defaults:visOmopResults:table:[section_name]:border-color", "defaults:visOmopResults:table:[section_name]:border-width"), "Option 2" = c("color:background", "-", "-", "-", "defaults:visOmopResults:table:font-size", "defaults:visOmopResults:table:font_family", "defaults:visOmopResults:table:border-color", "defaults:visOmopResults:table:border-width"), "Option 3" = c("-", "-", "-", "-", "defaults:visOmopResults:typography:base:size", "typography:base:family", "-", "-") ) ) |> visTable(groupColumn = "type")
In the examples above the YML path is represented with colon separators. For example, plot:background-color refers to the background-color key inside the plot section.
The table-formatting functions (visTable(), visOmopTable(), and formatTable()) and plot functions accept a style argument. The style argument can be:
"darwin"), or .yml file that defines a custom style, or .yml structure (only tables - see next section).Example: apply the built-in "darwin" style to a plot:
result <- mockSummarisedResult() |> filter(variable_name == "age") barPlot( result = result, x = "cohort_name", y = "mean", facet = c("age_group", "sex"), colour = "sex", style = "darwin" )
Example: use a custom .yml file (path provided):
barPlot( result = result, x = "cohort_name", y = "mean", facet = c("age_group", "sex"), colour = "sex", style = here("MyStyleFolder", "MyStyle.yml") )
_brand.ymlIf style = NULL and no global options are provided (via setGlobalPlotOptions() or setGlobalTableOptions()), the built-in "default" style is used. However, if a _brand.yml file is present in the project directory, that file’s style will be used.
You can customise styles programmatically without creating a .yml file by passing a named list to the style argument. The list should follow the same table section structure as the .yml.
Below is an example that sets table section styles for gt.
result |> visOmopTable( estimateName = c("Mean (SD)" = "<mean> (<sd>)"), groupColumn = "cohort_name", header = c("This is an overall header", "sex"), type = "gt", style = list( header = list( cell_text(weight = "bold"), cell_fill(color = "red") ), header_name = list( cell_text(weight = "bold"), cell_fill(color = "orange") ), header_level = list( cell_text(weight = "bold"), cell_fill(color = "yellow") ), column_name = list( cell_text(weight = "bold") ), group_label = list( cell_fill(color = "blue"), cell_text(color = "white", weight = "bold") ), title = list( cell_text(size = 20, weight = "bold") ), subtitle = list( cell_text(size = 15) ), body = list( cell_text(color = "red") ) ), .options = list( title = "My formatted table!", subtitle = "Created with the `visOmopResults` R package.", groupAsColumn = FALSE, groupOrder = c("cohort2", "cohort1") ) )
Note that style objects differ across table engines, so the code must be adapted to the engine you use.
For flextable, styling objects come from the officer package. The structure is similar, but the style objects differ:
result |> visOmopTable( estimateName = c("Mean (SD)" = "<mean> (<sd>)"), groupColumn = "cohort_name", header = c("This is an overall header", "sex"), type = "flextable", style = list( header = list( cell = fp_cell(background.color = "red"), text = fp_text(bold = TRUE) ), header_level = list( cell = fp_cell(background.color = "orange"), text = fp_text(bold = TRUE) ), header_name = list( cell = fp_cell(background.color = "yellow"), text = fp_text(bold = TRUE) ), column_name = list( text = fp_text(bold = TRUE) ), group_label = list( cell = fp_cell(background.color = "blue"), text = fp_text(bold = TRUE, color = "white") ), title = list( text = fp_text(bold = TRUE, font.size = 20) ), subtitle = list( text = fp_text(font.size = 15) ), body = list( text = fp_text(color = "red") ) ), .options = list( title = "My formatted table!", subtitle = "Created with the `visOmopResults` R package.", groupAsColumn = FALSE, groupOrder = c("cohort2", "cohort1") ) )
Plot helpers return ggplot2 objects, so you can further modify them using + and regular ggplot2 calls:
library(ggplot2) barPlot( result = result, x = "cohort_name", y = "mean", facet = c("age_group", "sex"), colour = "sex" ) + theme( strip.background = element_rect(fill = "#ffeb99", colour = "#ffcc00"), legend.position = "top", panel.grid.major = element_line(color = "transparent", linewidth = 0.25) ) + scale_color_manual(values = c("black", "black", "black")) + scale_fill_manual(values = c("#999999", "#E69F00", "#56B4E9"))
To use a specific font family in ggplot2, the font must be:
Installed in the operating system, and
Available to R’s graphics device (registered, in the case of Windows).
Below is an example using the Calibri font.
On both macOS and Windows, install the .ttf file by double-clicking it and clicking Install.
Example source: https://www.freefontdownload.org/en/calibri.font
After installing new system fonts, restart R or RStudio so the font registry is refreshed.
On macOS, most system fonts are automatically available to R’s Quartz graphics device (no need to register).
On Windows, however, the base graphics device does not automatically expose all installed system fonts. You must register a font before ggplot2 can use it. This can be done as follows:
windowsFonts(Calibri = windowsFont("Calibri"))
visOmopResults package automatically registers any installed font when needed, so users generally do not have to run this manually.You can specify the font family in your YAML configuration, or directly in theme() using element_text().
Below is an example using the "darwin" plot style, which will use "Calibri" when available, otherwise falling back to "sans":
barPlot( result = result, x = "cohort_name", y = "mean", facet = c("age_group", "sex"), colour = "sex", style = "darwin" )
After installing system fonts, restart R/RStudio so R can detect them.
On Windows, font registrations done with windowsFonts() last only for the current R session and revert after restarting.
For font detection across platforms, visOmopResults uses the systemfonts package and registers fonts on Windows when needed.
The .yml customisation system allows you to control most aspects of the visual appearance of your tables and plots. To learn more about brand.yml and how it interacts with other elements such as Shiny apps and Quarto/R Markdown documents, refer to https://posit-dev.github.io/brand-yml/.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.