vmgeomVst | R Documentation |
Applies a variance-stabilizing transformation to visual meteor magnitudes under the geometric model.
vmgeomVstFromMagn(m, lm)
vmgeomVstToR(tm, log = FALSE, deriv.degree = 0L)
m |
integer; meteor magnitude. |
lm |
numeric; limiting magnitude. |
tm |
numeric; transformed magnitude. |
log |
logical; if |
deriv.degree |
integer; the order of the derivative at |
Many linear models require the variance of visual meteor magnitudes to be
homoscedastic. The function vmgeomVstFromMagn
applies a transformation
that produces homoscedastic distributions of visual meteor magnitudes if the
underlying distribution follows a geometric model.
The geometric model of visual meteor magnitudes
depends on the population index r
and the limiting magnitude lm
,
resulting in a two-parameter distribution. Without detection probabilities,
the magnitude distribution is purely geometric, and for integer limiting
magnitudes the variance depends only on the population index r
. Since the
limiting magnitude lm
is a fixed parameter and never estimated
statistically, the magnitudes can be transformed such that, for example,
the mean of the transformed magnitudes directly provides an estimate of r
using the function vmgeomVstToR
.
A key advantage of this transformation is that the limiting magnitude lm
is already incorporated into subsequent analyses. In this sense, the
transformation acts as a normalization of meteor magnitudes and yields a
variance close to 1.0
.
This transformation is valid for 1.4 \le r \le 3.5
.
The numerical form of the transformation is version-specific and may change
substantially in future releases. Do not rely on equality of transformed
values across package versions.
vmgeomVstFromMagn
: numeric value, the transformed meteor magnitude.
vmgeomVstToR
: numeric value of the population index r
, derived from
the mean of tm
.
The argument deriv.degree
can be used to apply the delta method.
If log = TRUE
, the logarithm of r
is returned.
vmgeom
N <- 100
r <- 2.0
limmag <- 6.3
# Simulate magnitudes
m <- rvmgeom(N, limmag, r)
# Variance-stabilizing transformation
tm <- vmgeomVstFromMagn(m, limmag)
tm.mean <- mean(tm)
tm.var <- var(tm)
# Estimator for r from the transformed mean
r.hat <- vmgeomVstToR(tm.mean)
# Derivative dr/d(tm) at tm.mean (needed for the delta method)
dr_dtm <- vmgeomVstToR(tm.mean, deriv.degree = 1L)
# Variance of the sample mean of tm
var_tm.mean <- tm.var / N
# Delta method: variance and standard error of r.hat
var_r.hat <- (dr_dtm^2) * var_tm.mean
se_r.hat <- sqrt(var_r.hat)
# Results
print(r.hat)
print(se_r.hat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.