View source: R/identify_outlier.R
identify_outlier | R Documentation |
This function takes in a selected metric and uses
z-score (number of standard deviations) to identify outliers
across time. There are applications in this for identifying
weeks with abnormally low collaboration activity, e.g. holidays.
Time as a grouping variable can be overridden with the group_var
argument.
identify_outlier(
data,
group_var = "MetricDate",
metric = "Collaboration_hours"
)
data |
A Standard Person Query dataset in the form of a data frame. |
group_var |
A string with the name of the grouping variable.
Defaults to |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
Returns a data frame with MetricDate
(if grouping variable is not set),
the metric, and the corresponding z-score.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_privacythreshold()
,
identify_shifts()
,
identify_tenure()
,
track_HR_change()
,
validation_report()
identify_outlier(pq_data, metric = "Collaboration_hours")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.