| vivi_importance | R Documentation | 
Compute variable importance only, without interactions.
vivi_importance(
  data,
  fit,
  response,
  importanceType = "agnostic",
  class = 1,
  predictFun = NULL,
  numPerm = 4,
  showVimpError = FALSE,
  vars = NULL,
  as_matrix = FALSE,
  reorder = FALSE
)
data | 
 Data frame used for   | 
fit | 
 A supervised ML model understood by   | 
response | 
 Name of the response column in   | 
importanceType | 
 Importance metric to use. Defaults to "agnostic" (permutation via flashlight). If an embedded metric exists, set this to that metric name to extract it instead.  | 
class | 
 Classification level (factor level or 1-based index) when   | 
predictFun | 
 Optional prediction function of signature   | 
numPerm | 
 Number of permutations for agnostic importance. Default 4.  | 
showVimpError | 
 If TRUE and   | 
vars | 
 Optional character vector of feature names to restrict the calculation.  | 
as_matrix | 
 If TRUE, return a square matrix with importances on the diagonal and zeros elsewhere; otherwise return a named numeric vector. Default FALSE.  | 
reorder | 
 If   | 
Named numeric vector of importances, or a square matrix if as_matrix = TRUE.
# Example 1 — importance as a named vector
aq <- na.omit(airquality)
fit_lm <- lm(Ozone ~ ., data = aq)
imp_vec <- vivi_importance(data = aq, fit = fit_lm, response = "Ozone")
head(imp_vec)
# Example 2 — importance as a diagonal matrix for plotting
imp_mat <- vivi_importance(data = aq, fit = fit_lm, response = "Ozone",
                           as_matrix = TRUE)
# viviHeatmap(imp_mat)  # if you want to visualise the diagonal
# Example 3 — embedded importance from a random forest (if available)
if (requireNamespace("randomForest", quietly = TRUE)) {
  library(randomForest)
  rf <- randomForest(Ozone ~ ., data = aq, importance = TRUE)
  vivi_importance(data = aq, fit = rf, response = "Ozone",
                  importanceType = "%IncMSE")
}
# Example 4 — classification model with ranger using embedded impurity importance
if (requireNamespace("ranger", quietly = TRUE)) {
  library(ranger)
  fit_rf <- ranger(Species ~ ., data = iris,
                   importance = "impurity", probability = TRUE)
  vivi_importance(data = iris, fit = fit_rf, response = "Species",
                  importanceType = "impurity")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.