modwt | R Documentation |
This function performs a level J
decomposition of the input vector
using the non-decimated discrete wavelet transform. The inverse transform
performs the reconstruction of a vector or time series from its maximal
overlap discrete wavelet transform.
modwt(x, wf = "la8", n.levels = 4, boundary = "periodic")
imodwt(y)
x |
a vector or time series containing the data be to decomposed. There is no restriction on its length. |
wf |
Name of the wavelet filter to use in the decomposition. By
default this is set to |
n.levels |
Specifies the depth of the decomposition. This must be a number less than or equal to log(length(x),2). |
boundary |
Character string specifying the boundary condition. If
|
y |
an object of class |
The code implements the one-dimensional non-decimated DWT using the pyramid algorithm. The actual transform is performed in C using pseudocode from Percival and Walden (2001). That means convolutions, not inner products, are used to apply the wavelet filters.
The MODWT goes by several names in the statistical and engineering literature, such as, the “stationary DWT”, “translation-invariant DWT”, and “time-invariant DWT”.
The inverse MODWT implements the one-dimensional inverse transform using the pyramid algorithm (Mallat, 1989).
Basically, a list with the following components
d? |
Wavelet coefficient vectors. |
s? |
Scaling coefficient vector. |
wavelet |
Name of the wavelet filter used. |
boundary |
How the boundaries were handled. |
B. Whitcher
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.
Percival, D. B. and P. Guttorp (1994) Long-memory processes, the Allan variance and wavelets, In Wavelets and Geophysics, pages 325-344, Academic Press.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
dwt
, idwt
, mra
.
## Figure 4.23 in Gencay, Selcuk and Whitcher (2001)
data(ibm)
ibm.returns <- diff(log(ibm))
# Haar
ibmr.haar <- modwt(ibm.returns, "haar")
names(ibmr.haar) <- c("w1", "w2", "w3", "w4", "v4")
# LA(8)
ibmr.la8 <- modwt(ibm.returns, "la8")
names(ibmr.la8) <- c("w1", "w2", "w3", "w4", "v4")
# shift the MODWT vectors
ibmr.la8 <- phase.shift(ibmr.la8, "la8")
## plot partial MODWT for IBM data
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(a)")
for(i in 1:5)
plot.ts(ibmr.haar[[i]], axes=FALSE, ylab=names(ibmr.haar)[i])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(ibm.returns, axes=FALSE, ylab="", main="(b)")
for(i in 1:5)
plot.ts(ibmr.la8[[i]], axes=FALSE, ylab=names(ibmr.la8)[i])
axis(side=1, at=seq(0,368,by=23),
labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276,"",322,"",368))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.