getarrvec | R Documentation |
Computes weaving permutation for conversion from wst
objects to wd
getarrvec(nlevels, sort=TRUE)
nlevels |
The |
sort |
If |
Conversion of wst
objects into wd
objects and vice versa can be carried out using the convert.wst
and convert.wd
functions. These latter functions depend on this getarrvec function to compute the permutation which maps coefficients from one ordering to the other.
This function returns a matrix which gives the necessary permutations for scale levels 1 to nlevels-1
. If you want to get the permutation for the level 0 coefficients of the wst
object you will have to call the levarr
function directly.
This permutation is described in Nason, Sapatinas and Sawczenko, 1998.
The function that actually computes the permutations is levarr
. This function just combines the results from levarr
.
A matrix with nlevel
s-1 columns. Column 1 corresponds to scale level nlevels-1
in the wst
object, and column nlevels-1
corresponds to scale level 1 in the wst
object. Replace wst
by wd
if sort=FALSE
.
Version 3.6 Copyright Guy Nason 1997
G P Nason
convert
, convert.wd
, convert.wst
, levarr
, wst
, wst.object
, wpst
.
#
# What would the permutation be for a wst
# object with 4 levels?
#
arrvec <- getarrvec(4)
#arrvec
# [,1] [,2] [,3]
# [1,] 1 1 1
# [2,] 9 9 9
# [3,] 2 5 5
# [4,] 10 13 13
# [5,] 3 2 3
# [6,] 11 10 11
# [7,] 4 6 7
# [8,] 12 14 15
# [9,] 5 3 2
#[10,] 13 11 10
#[11,] 6 7 6
#[12,] 14 15 14
#[13,] 7 4 4
#[14,] 15 12 12
#[15,] 8 8 8
#[16,] 16 16 16
#
# The permutation for level 3 is in column 1
# The permutation for level 2 is in column 2
# The permutation for level 1 is in column 3.
#
# The following shows that the above is the right permutation (for level 2
# at least.
#
# Start off with some random normal data!
#
myrand <- rnorm(1:16)
#
# Now take both the time ordered non-decimated wavelet
# transform and the packet ordered non-decimated wavelet
# transform.
#
myrwdS <- wd(myrand, type="station")
myrwst <- wst(myrand)
#
# Let's look at the level 2 coefficients of myrwdS
#
accessD(myrwdS, level=2)
# [1] -0.73280829 -0.97892279 1.33305777 1.46320165 -0.94790098
# [6] -1.39276215 0.40023757 0.82517249 -0.56317955 -0.89408713
#[11] 0.77166463 1.56204870 -0.34342230 -1.64133182 0.08235115
#[16] 1.05668106
#
# Let's look at the level 2 coefficients of myrwst
#
accessD(myrwst, level=2)
# [1] -0.73280829 -0.94790098 -0.56317955 -0.34342230 1.33305777
# [6] 0.40023757 0.77166463 0.08235115 -0.97892279 -1.39276215
#[11] -0.89408713 -1.64133182 1.46320165 0.82517249 1.56204870
#[16] 1.05668106
#
# O.k. So the coefficients are the same, but they are not in the
# same order as in myrwdS. So let's use the permutation in the
# second column of arrvec to reorder the myrwst coefficients
# to have the same order as the myrwdS ones
#
accessD(myrwst, level=2)[arrvec[,2]]
# [1] -0.73280829 -0.97892279 1.33305777 1.46320165 -0.94790098
# [6] -1.39276215 0.40023757 0.82517249 -0.56317955 -0.89408713
#[11] 0.77166463 1.56204870 -0.34342230 -1.64133182 0.08235115
#[16] 1.05668106
#
# These coefficients have the correct ordering.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.