Nothing
Code
df_local_c <- ww_local_geary_c(guerry_modeled, Crm_prs, predictions)
df_local_c[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_geary_c standard 0.981
2 local_geary_c standard 0.836
3 local_geary_c standard 0.707
4 local_geary_c standard 0.108
5 local_geary_c standard 0.264
6 local_geary_c standard 1.36
7 local_geary_c standard 3.64
8 local_geary_c standard 1.57
9 local_geary_c standard 0.867
10 local_geary_c standard 0.737
# i 75 more rows
Code
df_local_c_p <- ww_local_geary_pvalue(guerry_modeled, Crm_prs, predictions)
df_local_c_p[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_geary_pvalue standard 0.202
2 local_geary_pvalue standard 0.255
3 local_geary_pvalue standard 0.164
4 local_geary_pvalue standard 0.141
5 local_geary_pvalue standard 0.277
6 local_geary_pvalue standard 0.138
7 local_geary_pvalue standard 0.422
8 local_geary_pvalue standard 0.208
9 local_geary_pvalue standard 0.802
10 local_geary_pvalue standard 0.412
# i 75 more rows
Code
(vec_local_c <- ww_local_geary_c_vec(guerry_modeled$Crm_prs, guerry_modeled$
predictions, weights))
Output
[1] 0.981119438 0.836402177 0.707464373 0.108332465 0.264075824 1.361485477
[7] 3.641239412 1.571824022 0.867252524 0.737094462 0.573376555 0.001605731
[13] 1.891988440 1.152840284 1.029320931 0.297642850 1.219953394 1.934113868
[19] 1.632566652 0.441916658 5.202733790 0.921953310 3.084515822 0.237218594
[25] 1.346684045 1.051652204 0.419414691 0.217280214 0.794409207 0.243971372
[31] 0.376678958 0.139152907 0.711305633 3.096840680 1.974463944 0.922230710
[37] 1.032031759 0.339464386 0.933794842 1.910440700 0.937597672 0.625628647
[43] 0.376707677 2.692250283 1.288784962 0.798443065 1.671895951 1.310183326
[49] 2.347513577 0.845204889 0.302940809 2.291804447 0.881999216 0.412051312
[55] 2.006031605 0.561239582 0.375776092 1.853716391 1.191472387 1.146802970
[61] 1.857618679 0.149044974 0.614228825 0.755373475 1.287962784 1.447534518
[67] 1.236607966 0.962394651 0.338400653 1.914478855 0.641340157 2.146993342
[73] 0.703881855 1.417638272 0.692636715 1.765618175 0.246058853 0.700262130
[79] 0.002876896 0.057575267 0.420878038 2.025012395 2.525093274 1.053335832
[85] 1.030009749
Code
(vec_local_c_p <- ww_local_geary_pvalue_vec(guerry_modeled$Crm_prs,
guerry_modeled$predictions, weights))
Output
[1] 0.20234363 0.25519649 0.16396588 0.14117561 0.27656178 0.13803991
[7] 0.42226813 0.20763065 0.80158334 0.41221634 0.02279793 0.16590372
[13] 0.36280952 0.94038689 0.57012896 0.20065488 0.74279801 0.56659279
[19] 0.07231964 0.16050628 0.50930118 0.74413041 0.72654516 0.14156081
[25] 0.82683764 0.96497971 0.23835208 0.09164608 0.65695357 0.14596483
[31] 0.21116270 0.11062386 0.47581719 0.52089308 0.09617881 0.83006042
[37] 0.37021871 0.27543027 0.84760567 0.81945612 0.64406665 0.55516421
[43] 0.16365565 0.21954679 0.78645827 0.07224471 0.24248642 0.17178516
[49] 0.16197800 0.21527791 0.06550740 0.68776553 0.44107979 0.22441812
[55] 0.91939521 0.16998047 0.19854332 0.64059101 0.23958631 0.96021717
[61] 0.29282034 0.23743981 0.33944054 0.19039950 0.54411569 0.33254192
[67] 0.76919602 0.81252824 0.03109512 0.10399128 0.47133467 0.17643651
[73] 0.37037862 0.56606511 0.60793474 0.10983655 0.11452305 0.32746708
[79] 0.17184942 0.06669041 0.29892492 0.54538910 0.09744018 0.91852500
[85] 0.91349534
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.