Nothing
Code
df_local_i <- ww_local_getis_ord_g(guerry_modeled, Crm_prs, predictions)
df_local_i[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_getis_ord_g standard 0.913
2 local_getis_ord_g standard 2.49
3 local_getis_ord_g standard 2.15
4 local_getis_ord_g standard -1.58
5 local_getis_ord_g standard -1.19
6 local_getis_ord_g standard -1.68
7 local_getis_ord_g standard 0.627
8 local_getis_ord_g standard -1.60
9 local_getis_ord_g standard 0.964
10 local_getis_ord_g standard -2.71
# i 75 more rows
Code
df_local_i_p <- ww_local_getis_ord_g_pvalue(guerry_modeled, Crm_prs,
predictions)
df_local_i_p[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_getis_ord_g_pvalue standard 0.339
2 local_getis_ord_g_pvalue standard 0.0175
3 local_getis_ord_g_pvalue standard 0.0470
4 local_getis_ord_g_pvalue standard 0.136
5 local_getis_ord_g_pvalue standard 0.253
6 local_getis_ord_g_pvalue standard 0.0943
7 local_getis_ord_g_pvalue standard 0.541
8 local_getis_ord_g_pvalue standard 0.132
9 local_getis_ord_g_pvalue standard 0.361
10 local_getis_ord_g_pvalue standard 0.00787
# i 75 more rows
Code
(vec_local_i <- ww_local_getis_ord_g_vec(guerry_modeled$Crm_prs, guerry_modeled$
predictions, weights))
Output
[1] 0.91288164 2.49305353 2.14692501 -1.57511235 -1.18988831 -1.67703329
[7] 0.62706195 -1.60139345 0.96397088 -2.71475331 -3.05125861 -1.64429475
[13] 1.15584938 -2.90161984 -0.63376101 0.61005430 2.29888368 -0.28799789
[19] 1.53012357 1.22699107 0.59816133 -0.65331166 0.87501663 -1.75661589
[25] 0.39100454 0.52017062 1.16424138 -3.20781683 -2.29583912 -0.98116177
[31] 0.06685550 -2.13635236 2.30311768 0.63548278 1.99855789 -0.24366435
[37] 1.55058791 0.17231008 1.52062197 -0.22999799 -1.29501163 1.08298736
[43] 0.13063616 -1.21798455 -1.00549332 -2.29306942 0.89419782 1.19832028
[49] 2.03154442 0.87398122 2.88484032 -0.76194353 1.52453019 1.36764146
[55] -0.06618369 1.47010332 1.89277905 0.52529402 1.63007385 2.00852739
[61] 1.14763247 -0.91644996 -0.49669001 -1.85515687 -1.00553207 -0.86081555
[67] 1.63219209 1.04953518 2.51838763 1.71259713 -0.49967695 1.35387348
[73] -0.33336379 -0.07498653 0.56058846 1.54116260 -1.91772217 -1.92601432
[79] -1.62505600 -2.60384397 0.42262985 1.16021704 1.46229964 0.06056077
[85] 1.08651166
Code
(vec_local_i_p <- ww_local_getis_ord_g_pvalue_vec(guerry_modeled$Crm_prs,
guerry_modeled$predictions, weights))
Output
[1] 0.338551650 0.017476897 0.046989319 0.136306243 0.252759855 0.094280941
[7] 0.540950240 0.131507964 0.360573261 0.007868825 0.002910297 0.099812583
[13] 0.263145960 0.006073623 0.486840848 0.592079221 0.024897187 0.769018856
[19] 0.147064254 0.236079422 0.566712648 0.491109230 0.430473715 0.079265433
[25] 0.725081238 0.578327557 0.252363140 0.001922916 0.033158491 0.345911465
[31] 0.980042792 0.026524059 0.020365959 0.457589915 0.049929480 0.842223381
[37] 0.122974384 0.896634027 0.134780339 0.852933638 0.197999212 0.283637329
[43] 0.908861719 0.251729216 0.309816435 0.029894833 0.388820107 0.244965500
[49] 0.055290126 0.358699720 0.004749006 0.419371223 0.135285432 0.172833170
[55] 0.889256614 0.166182979 0.052600987 0.625967137 0.123280301 0.042396581
[61] 0.263286551 0.358596865 0.672797323 0.064221214 0.333500223 0.360499055
[67] 0.106951191 0.292784000 0.020687637 0.123175709 0.582501078 0.195554540
[73] 0.718377209 0.944328466 0.556059177 0.167383256 0.060941608 0.081390165
[79] 0.130453836 0.012380565 0.707571437 0.277582701 0.190935930 0.922672415
[85] 0.296789212
Code
df_local_i <- ww_local_getis_ord_g(guerry_modeled, Crm_prs, predictions,
weights)
df_local_i[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_getis_ord_gstar standard 1.35
2 local_getis_ord_gstar standard 2.64
3 local_getis_ord_gstar standard 2.33
4 local_getis_ord_gstar standard -1.84
5 local_getis_ord_gstar standard -1.19
6 local_getis_ord_gstar standard -2.06
7 local_getis_ord_gstar standard 1.58
8 local_getis_ord_gstar standard -2.32
9 local_getis_ord_gstar standard 0.880
10 local_getis_ord_gstar standard -2.74
# i 75 more rows
Code
df_local_i_p <- ww_local_getis_ord_g_pvalue(guerry_modeled, Crm_prs,
predictions, weights)
df_local_i_p[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_getis_ord_gstar_pvalue standard 0.353
2 local_getis_ord_gstar_pvalue standard 0.0153
3 local_getis_ord_gstar_pvalue standard 0.0447
4 local_getis_ord_gstar_pvalue standard 0.124
5 local_getis_ord_gstar_pvalue standard 0.257
6 local_getis_ord_gstar_pvalue standard 0.104
7 local_getis_ord_gstar_pvalue standard 0.579
8 local_getis_ord_gstar_pvalue standard 0.100
9 local_getis_ord_gstar_pvalue standard 0.324
10 local_getis_ord_gstar_pvalue standard 0.00724
# i 75 more rows
Code
(vec_local_i <- ww_local_getis_ord_g_vec(guerry_modeled$Crm_prs, guerry_modeled$
predictions, weights))
Output
[1] 1.35371776 2.64470358 2.33101218 -1.83696218 -1.19214894 -2.06145107
[7] 1.58230958 -2.31764702 0.88028873 -2.74035690 -3.39292895 -1.87812026
[13] 0.85856419 -2.81583254 -0.31227470 0.49524512 2.24081985 -0.51676147
[19] 2.00481255 1.63825389 1.39112875 -0.55103244 0.08003347 -1.97182396
[25] 0.11106013 0.56430623 1.71460247 -3.33281642 -2.22026799 -0.98578659
[31] 0.30960568 -2.34956428 2.25994512 1.20029086 1.79507717 -0.29168508
[37] 1.78306056 0.01327693 1.48600121 0.13091399 -1.40966303 0.93339994
[43] 0.02027691 -1.82812173 -0.79364697 -2.75575017 1.26343283 1.74008875
[49] 1.69116164 1.14388681 3.09199200 -0.26702307 1.66914599 1.42530173
[55] -0.65613591 1.62256416 2.11228076 0.90733590 1.93759338 1.91124325
[61] 0.92968354 -1.01687632 -0.94802983 -2.54791742 -1.35286802 -1.66942606
[67] 1.40993406 1.10799183 2.75546130 2.26572376 -0.86272825 1.07976560
[73] -0.21434998 -0.43824366 0.43342398 2.13948993 -2.14931849 -2.06450852
[79] -1.88711642 -2.74970443 0.42882579 0.82915623 1.17030359 0.01011938
[85] 0.90033560
Code
(vec_local_i_p <- ww_local_getis_ord_g_pvalue_vec(guerry_modeled$Crm_prs,
guerry_modeled$predictions, weights))
Output
[1] 0.353320976 0.015320807 0.044659841 0.124494604 0.257380879 0.104374603
[7] 0.579386974 0.100499213 0.324430137 0.007238788 0.003024914 0.089786809
[13] 0.245293341 0.001554081 0.515887921 0.580670550 0.028218825 0.782467003
[19] 0.148454172 0.225639656 0.571064419 0.540603232 0.425964966 0.102290000
[25] 0.750018977 0.653242771 0.239989113 0.001853200 0.019877161 0.378631358
[31] 0.895027710 0.026860310 0.029574160 0.542892507 0.049082054 0.843613753
[37] 0.119831188 0.922323909 0.121905018 0.802914179 0.238752158 0.286284115
[43] 0.901178086 0.246053959 0.336073064 0.017506445 0.428596576 0.209104318
[49] 0.049489955 0.405297312 0.004827649 0.463676567 0.145834651 0.166071593
[55] 0.952182978 0.177860755 0.070212352 0.661584162 0.117573309 0.035904620
[61] 0.249850749 0.301292619 0.623718225 0.073175337 0.343285322 0.455803772
[67] 0.097245254 0.305824379 0.019794928 0.090672872 0.600765705 0.181230901
[73] 0.778825479 0.987438813 0.557938792 0.135621556 0.055019155 0.049909299
[79] 0.095463604 0.009723617 0.720748620 0.245515207 0.162155516 0.966175966
[85] 0.314680103
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.