Nothing
Code
df_local_i <- ww_local_moran_i(guerry_modeled, Crm_prs, predictions)
df_local_i[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_moran_i standard 0.530
2 local_moran_i standard 0.858
3 local_moran_i standard 0.759
4 local_moran_i standard 0.732
5 local_moran_i standard 0.207
6 local_moran_i standard 0.860
7 local_moran_i standard 0.692
8 local_moran_i standard 1.69
9 local_moran_i standard -0.0109
10 local_moran_i standard 0.710
# i 75 more rows
Code
df_local_i_p <- ww_local_moran_pvalue(guerry_modeled, Crm_prs, predictions)
df_local_i_p[1:3]
Output
# A tibble: 85 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 local_moran_pvalue standard 0.361
2 local_moran_pvalue standard 0.0127
3 local_moran_pvalue standard 0.0318
4 local_moran_pvalue standard 0.115
5 local_moran_pvalue standard 0.234
6 local_moran_pvalue standard 0.0935
7 local_moran_pvalue standard 0.531
8 local_moran_pvalue standard 0.109
9 local_moran_pvalue standard 0.335
10 local_moran_pvalue standard 0.00663
# i 75 more rows
Code
(vec_local_i <- ww_local_moran_i_vec(guerry_modeled$Crm_prs, guerry_modeled$
predictions, weights))
Output
[1] 0.529586027 0.857962397 0.759397482 0.731821184 0.207216255
[6] 0.859824645 0.692480894 1.685682868 -0.010937577 0.709971045
[11] 1.756476080 0.839390997 -0.208812822 0.311287253 -0.195850256
[16] -0.046485425 0.219659575 0.072248473 0.911260991 0.796818074
[21] 0.472218810 -0.047995949 -0.701165391 0.682001844 -0.114131742
[26] 0.043283334 1.067791069 1.186850176 0.174554949 0.071132504
[31] 0.014932487 1.014614517 0.258635858 0.385988835 -0.113213840
[36] 0.016531123 0.601974328 -0.029051514 0.101963855 -0.098393898
[41] 0.305211136 -0.057462330 -0.015702560 0.882089292 -0.163892577
[46] 1.649695545 0.377330987 0.868476489 -0.465975751 0.303084203
[51] 1.404344537 -0.370062874 0.440556284 0.289554503 0.035787495
[56] 0.393521099 1.006384006 0.222959827 0.730981130 0.628215009
[61] -0.183012992 0.227295946 0.284153229 2.316505472 0.494418600
[66] 0.982994320 -0.124397352 0.160297076 1.039537767 1.231583113
[71] 0.271055716 -0.168894660 -0.038283576 0.017831736 -0.052920056
[76] 1.205308932 0.808428811 0.551329387 0.878044848 0.901458850
[81] 0.022009901 -0.327876773 -0.318368758 -0.003280457 -0.124796245
Code
(vec_local_i_p <- ww_local_moran_pvalue_vec(guerry_modeled$Crm_prs,
guerry_modeled$predictions, weights))
Output
[1] 0.361304795 0.012664975 0.031799252 0.115230513 0.234090293 0.093535973
[7] 0.530618631 0.109289803 0.335060524 0.006632515 0.002278842 0.100115333
[13] 0.247742772 0.003712388 0.526236804 0.541825841 0.021511546 0.773348351
[19] 0.125986145 0.219825946 0.549732292 0.513555378 0.381564858 0.078983302
[25] 0.695793884 0.602944660 0.244326204 0.001337467 0.021685082 0.326512972
[31] 0.946696741 0.032650704 0.021272223 0.525113591 0.045656211 0.807490784
[37] 0.121000471 0.863193762 0.128354731 0.818093330 0.195316218 0.278814034
[43] 0.896063138 0.223229844 0.314659364 0.021844009 0.371216056 0.230792356
[49] 0.042199799 0.382128483 0.003916122 0.446093710 0.127376322 0.171424332
[55] 0.947231579 0.141533773 0.058387258 0.599378815 0.103085890 0.044587278
[61] 0.251120319 0.359430944 0.619407669 0.063573829 0.314640714 0.389339642
[67] 0.102639026 0.293931872 0.011789349 0.086786681 0.617302569 0.175776744
[73] 0.738859695 0.940225426 0.575078121 0.123277217 0.055146249 0.054102586
[79] 0.104150628 0.009218471 0.672565343 0.245960451 0.143659118 0.951709014
[85] 0.277252686
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.