Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = rlang::is_installed("ggplot2")
)
## ----message=FALSE------------------------------------------------------------
# waywiser itself, of course:
library(waywiser)
# For the %>% pipe and mutate:
library(dplyr)
## -----------------------------------------------------------------------------
guerry %>%
mutate(pred = predict(lm(Crm_prs ~ Litercy, .))) %>%
ww_local_moran_i(Crm_prs, pred)
## -----------------------------------------------------------------------------
ww_build_neighbors(guerry)
ww_build_weights(guerry)
## -----------------------------------------------------------------------------
weights <- guerry %>%
sf::st_geometry() %>%
sf::st_centroid() %>%
spdep::dnearneigh(0, 97000) %>%
spdep::nb2listw()
weights
guerry %>%
mutate(pred = predict(lm(Crm_prs ~ Litercy, .))) %>%
ww_local_moran_i(Crm_prs, pred, weights)
## -----------------------------------------------------------------------------
weights_function <- function(data) {
data %>%
sf::st_geometry() %>%
sf::st_centroid() %>%
spdep::dnearneigh(0, 97000) %>%
spdep::nb2listw()
}
guerry %>%
mutate(pred = predict(lm(Crm_prs ~ Litercy, .))) %>%
ww_local_moran_i(Crm_prs, pred, weights_function)
## ----2022_06_29-guerry, fig.width=8-------------------------------------------
library(ggplot2)
weights <- ww_build_weights(guerry)
guerry %>%
mutate(
pred = predict(lm(Crm_prs ~ Litercy, .)),
.estimate = ww_local_moran_i_vec(Crm_prs, pred, weights)
) %>%
sf::st_as_sf() %>%
ggplot(aes(fill = .estimate)) +
geom_sf() +
scale_fill_gradient2(
"Local Moran",
low = "#018571",
mid = "white",
high = "#A6611A"
)
## -----------------------------------------------------------------------------
moran <- yardstick::metric_set(
ww_global_moran_i,
ww_global_moran_pvalue
)
guerry %>%
mutate(pred = predict(lm(Crm_prs ~ Litercy, .))) %>%
moran(Crm_prs, pred)
## ----2023_02_21-guerryp, fig.width=8------------------------------------------
guerry %>%
mutate(
pred = predict(lm(Crm_prs ~ Litercy, .)),
.estimate = ww_local_moran_pvalue_vec(Crm_prs, pred, weights)
) %>%
sf::st_as_sf() %>%
ggplot(aes(fill = .estimate < 0.01)) +
geom_sf() +
scale_fill_discrete("Local Moran p-value < 0.01?") +
theme(legend.position = "bottom")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.