Nothing
[[1]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 1.00 0.0183 0.000674 0.0927 johnson
2 6910 1.06 0.0199 0.000859 0.0958 johnson
3 7120. 1.13 0.0216 0.00108 0.0990 johnson
4 7330. 1.20 0.0234 0.00134 0.102 johnson
5 7540 1.27 0.0252 0.00165 0.106 johnson
6 7750 1.34 0.0272 0.00201 0.109 johnson
7 7960. 1.42 0.0293 0.00242 0.113 johnson
8 8170 1.51 0.0314 0.00289 0.117 johnson
9 8380 1.59 0.0336 0.00341 0.121 johnson
10 8590 1.68 0.0360 0.00401 0.124 johnson
# i 92 more rows
[[2]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.711 0.0107 0.000128 0.0767 johnson
2 6910 0.772 0.0123 0.000200 0.0802 johnson
3 7120. 0.838 0.0140 0.000302 0.0840 johnson
4 7330. 0.911 0.0159 0.000445 0.0879 johnson
5 7540 0.989 0.0179 0.000636 0.0920 johnson
6 7750 1.07 0.0201 0.000887 0.0962 johnson
7 7960. 1.16 0.0225 0.00121 0.101 johnson
8 8170 1.26 0.0250 0.00161 0.105 johnson
9 8380 1.36 0.0276 0.00209 0.110 johnson
10 8590 1.47 0.0305 0.00268 0.115 johnson
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.911 0.0159 0.000445 0.0879 johnson
2 6910 0.971 0.0175 0.000589 0.0910 johnson
3 7120. 1.04 0.0192 0.000770 0.0943 johnson
4 7330. 1.10 0.0209 0.000991 0.0978 johnson
5 7540 1.18 0.0228 0.00126 0.101 johnson
6 7750 1.25 0.0248 0.00158 0.105 johnson
7 7960. 1.33 0.0269 0.00195 0.109 johnson
8 8170 1.42 0.0291 0.00239 0.113 johnson
9 8380 1.51 0.0314 0.00290 0.117 johnson
10 8590 1.60 0.0339 0.00347 0.121 johnson
# i 92 more rows
[[4]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.39 0.0284 0.00225 0.112 johnson
2 6910 1.43 0.0295 0.00248 0.113 johnson
3 7120. 1.48 0.0307 0.00272 0.115 johnson
4 7330. 1.52 0.0318 0.00299 0.118 johnson
5 7540 1.57 0.0331 0.00328 0.120 johnson
6 7750. 1.62 0.0343 0.00359 0.122 johnson
7 7960. 1.67 0.0357 0.00393 0.124 johnson
8 8170. 1.72 0.0370 0.00429 0.126 johnson
9 8380 1.78 0.0385 0.00469 0.129 johnson
10 8590. 1.83 0.0399 0.00511 0.131 johnson
# i 92 more rows
[[5]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.20 0.0233 0.00133 0.102 johnson
2 6910 1.25 0.0246 0.00155 0.105 johnson
3 7120. 1.30 0.0260 0.00179 0.107 johnson
4 7330. 1.35 0.0275 0.00206 0.110 johnson
5 7540 1.41 0.0290 0.00236 0.112 johnson
6 7750 1.47 0.0305 0.00269 0.115 johnson
7 7960 1.54 0.0322 0.00307 0.118 johnson
8 8170 1.60 0.0339 0.00348 0.121 johnson
9 8380. 1.67 0.0357 0.00394 0.124 johnson
10 8590 1.74 0.0376 0.00444 0.127 johnson
# i 92 more rows
[[6]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.33 0.0268 0.00192 0.109 johnson
2 6910 1.37 0.0279 0.00214 0.111 johnson
3 7120 1.42 0.0291 0.00238 0.113 johnson
4 7330 1.46 0.0303 0.00265 0.115 johnson
5 7540 1.51 0.0316 0.00294 0.117 johnson
6 7750 1.57 0.0329 0.00325 0.119 johnson
7 7960 1.62 0.0343 0.00359 0.122 johnson
8 8170 1.67 0.0358 0.00396 0.124 johnson
9 8380 1.73 0.0373 0.00437 0.127 johnson
10 8590 1.79 0.0389 0.00480 0.129 johnson
# i 92 more rows
[[1]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 1.00 0.0183 2013. 12248. johnson
2 6910 1.06 0.0199 2199. 12404. johnson
3 7120. 1.13 0.0216 2390. 12563. johnson
4 7330. 1.20 0.0234 2587. 12724. johnson
5 7540 1.27 0.0252 2788. 12886. johnson
6 7750 1.34 0.0272 2994. 13050. johnson
7 7960. 1.42 0.0293 3203. 13216. johnson
8 8170 1.51 0.0314 3416. 13383. johnson
9 8380 1.59 0.0336 3631. 13551. johnson
10 8590 1.68 0.0360 3848. 13721. johnson
# i 92 more rows
[[2]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.711 0.0107 3047. 11139. johnson
2 6910 0.772 0.0123 3258. 11295. johnson
3 7120. 0.838 0.0140 3475. 11457. johnson
4 7330. 0.911 0.0159 3697. 11624. johnson
5 7540 0.989 0.0179 3921. 11796. johnson
6 7750 1.07 0.0201 4147. 11973. johnson
7 7960. 1.16 0.0225 4375. 12153. johnson
8 8170 1.26 0.0250 4603. 12337. johnson
9 8380 1.36 0.0276 4830. 12525. johnson
10 8590 1.47 0.0305 5057. 12716. johnson
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.911 0.0159 2114. 11883. johnson
2 6910 0.971 0.0175 2314. 12033. johnson
3 7120. 1.04 0.0192 2522. 12186. johnson
4 7330. 1.10 0.0209 2735. 12341. johnson
5 7540 1.18 0.0228 2953. 12499. johnson
6 7750 1.25 0.0248 3175. 12660. johnson
7 7960. 1.33 0.0269 3401. 12823. johnson
8 8170 1.42 0.0291 3630. 12988. johnson
9 8380 1.51 0.0314 3861. 13156. johnson
10 8590 1.60 0.0339 4094. 13325. johnson
# i 92 more rows
[[4]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.39 0.0284 -7252. 14421. johnson
2 6910 1.43 0.0295 -6726. 14521. johnson
3 7120. 1.48 0.0307 -6207. 14622. johnson
4 7330. 1.52 0.0318 -5695. 14725. johnson
5 7540 1.57 0.0331 -5189. 14828. johnson
6 7750. 1.62 0.0343 -4690. 14933. johnson
7 7960. 1.67 0.0357 -4198. 15039. johnson
8 8170. 1.72 0.0370 -3712. 15146. johnson
9 8380 1.78 0.0385 -3232. 15255. johnson
10 8590. 1.83 0.0399 -2759. 15364. johnson
# i 92 more rows
[[5]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.20 0.0233 -2439. 13197. johnson
2 6910 1.25 0.0246 -2031. 13318. johnson
3 7120. 1.30 0.0260 -1628. 13442. johnson
4 7330. 1.35 0.0275 -1230. 13567. johnson
5 7540 1.41 0.0290 -838. 13695. johnson
6 7750 1.47 0.0305 -451. 13824. johnson
7 7960 1.54 0.0322 -69.4 13955. johnson
8 8170 1.60 0.0339 307. 14087. johnson
9 8380. 1.67 0.0357 678. 14222. johnson
10 8590 1.74 0.0376 1044. 14358. johnson
# i 92 more rows
[[6]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 1.33 0.0268 -6314. 13987. johnson
2 6910 1.37 0.0279 -5784. 14090. johnson
3 7120 1.42 0.0291 -5262. 14194. johnson
4 7330 1.46 0.0303 -4748. 14299. johnson
5 7540 1.51 0.0316 -4241. 14406. johnson
6 7750 1.57 0.0329 -3742. 14514. johnson
7 7960 1.62 0.0343 -3250. 14624. johnson
8 8170 1.67 0.0358 -2766. 14735. johnson
9 8380 1.73 0.0373 -2289. 14847. johnson
10 8590 1.79 0.0389 -1819. 14962. johnson
# i 92 more rows
[[1]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.23 0.0128 0.000769 0.0561 johnson
2 96.0 1.77 0.0203 0.00243 0.0696 johnson
3 98.0 2.39 0.0288 0.00523 0.0837 johnson
4 100. 3.07 0.0383 0.00912 0.0983 johnson
5 102. 3.82 0.0486 0.0140 0.113 johnson
6 104. 4.61 0.0595 0.0199 0.129 johnson
7 106. 5.45 0.0711 0.0266 0.145 johnson
8 108. 6.33 0.0832 0.0340 0.161 johnson
9 110. 7.24 0.0959 0.0422 0.177 johnson
10 111. 7.54 0.1 0.0449 0.182 johnson
# i 92 more rows
[[2]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.53 0.0170 0.00160 0.0639 johnson
2 96.0 1.92 0.0224 0.00304 0.0731 johnson
3 98.0 2.38 0.0287 0.00517 0.0834 johnson
4 100. 2.90 0.0359 0.00808 0.0947 johnson
5 102. 3.49 0.0441 0.0118 0.107 johnson
6 104. 4.15 0.0532 0.0165 0.120 johnson
7 106. 4.88 0.0632 0.0220 0.134 johnson
8 108. 5.66 0.0741 0.0284 0.149 johnson
9 110. 6.51 0.0858 0.0356 0.164 johnson
10 112. 7.41 0.0982 0.0437 0.180 johnson
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.62 0.0182 0.00189 0.0660 johnson
2 96.0 1.99 0.0234 0.00335 0.0748 johnson
3 98.0 2.42 0.0293 0.00541 0.0844 johnson
4 100. 2.91 0.0361 0.00815 0.0949 johnson
5 102. 3.46 0.0437 0.0116 0.106 johnson
6 104. 4.07 0.0521 0.0159 0.118 johnson
7 106. 4.74 0.0614 0.0209 0.131 johnson
8 108. 5.48 0.0715 0.0268 0.145 johnson
9 110. 6.27 0.0824 0.0335 0.159 johnson
10 112. 7.11 0.0941 0.0410 0.175 johnson
# i 92 more rows
[[1]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.23 0.0128 89.3 103. johnson
2 96.0 1.77 0.0203 90.3 106. johnson
3 98.0 2.39 0.0288 91.5 108. johnson
4 100. 3.07 0.0383 92.9 110. johnson
5 102. 3.82 0.0486 94.4 113. johnson
6 104. 4.61 0.0595 95.9 115. johnson
7 106. 5.45 0.0711 97.5 117. johnson
8 108. 6.33 0.0832 99.1 119. johnson
9 110. 7.24 0.0959 101. 122. johnson
10 111. 7.54 0.1 101. 122. johnson
# i 92 more rows
[[2]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.53 0.0170 82.6 106. johnson
2 96.0 1.92 0.0224 85.0 108. johnson
3 98.0 2.38 0.0287 87.3 110. johnson
4 100. 2.90 0.0359 89.5 111. johnson
5 102. 3.49 0.0441 91.7 113. johnson
6 104. 4.15 0.0532 93.8 115. johnson
7 106. 4.88 0.0632 95.8 117. johnson
8 108. 5.66 0.0741 97.9 119. johnson
9 110. 6.51 0.0858 99.9 121. johnson
10 112. 7.41 0.0982 102. 123. johnson
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x rank prob lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 1.62 0.0182 82.5 107. johnson
2 96.0 1.99 0.0234 84.6 109. johnson
3 98.0 2.42 0.0293 86.7 110. johnson
4 100. 2.91 0.0361 88.8 112. johnson
5 102. 3.46 0.0437 90.9 114. johnson
6 104. 4.07 0.0521 93.0 116. johnson
7 106. 4.74 0.0614 95.1 118. johnson
8 108. 5.48 0.0715 97.2 119. johnson
9 110. 6.27 0.0824 99.2 121. johnson
10 112. 7.11 0.0941 101. 123. johnson
# i 92 more rows
[[1]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0112 0.916 0.00186 0.0655 <NA>
2 6910 0.0123 0.895 0.00214 0.0691 <NA>
3 7120. 0.0135 0.875 0.00245 0.0729 <NA>
4 7330. 0.0148 0.855 0.00279 0.0767 <NA>
5 7540 0.0162 0.835 0.00317 0.0805 <NA>
6 7750 0.0177 0.817 0.00359 0.0845 <NA>
7 7960. 0.0192 0.799 0.00404 0.0886 <NA>
8 8170 0.0208 0.781 0.00454 0.0927 <NA>
9 8380 0.0225 0.764 0.00509 0.0969 <NA>
10 8590 0.0244 0.747 0.00568 0.101 <NA>
# i 92 more rows
[[2]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.00589 0.431 0.000385 0.0472 <NA>
2 6910 0.00694 0.421 0.000511 0.0509 <NA>
3 7120. 0.00812 0.410 0.000668 0.0549 <NA>
4 7330. 0.00942 0.401 0.000862 0.0589 <NA>
5 7418. 0.01 0.397 0.000956 0.0607 <NA>
6 7540 0.0109 0.391 0.00110 0.0631 <NA>
7 7750 0.0124 0.382 0.00138 0.0675 <NA>
8 7960. 0.0141 0.373 0.00172 0.0719 <NA>
9 8170 0.0160 0.365 0.00212 0.0765 <NA>
10 8380 0.0180 0.357 0.00259 0.0812 <NA>
# i 93 more rows
[[3]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.00906 0.982 0.00133 0.0590 <NA>
2 6891. 0.01 0.961 0.00153 0.0623 <NA>
3 6910 0.0101 0.959 0.00156 0.0626 <NA>
4 7120. 0.0112 0.936 0.00181 0.0663 <NA>
5 7330. 0.0124 0.913 0.00210 0.0701 <NA>
6 7540 0.0137 0.892 0.00242 0.0740 <NA>
7 7750 0.0151 0.871 0.00277 0.0780 <NA>
8 7960. 0.0166 0.851 0.00317 0.0821 <NA>
9 8170 0.0182 0.831 0.00362 0.0863 <NA>
10 8380 0.0199 0.813 0.00410 0.0906 <NA>
# i 93 more rows
[[4]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0286 0.698 0.00735 0.108 <NA>
2 6910 0.0297 0.691 0.00775 0.110 <NA>
3 7120. 0.0308 0.684 0.00816 0.113 <NA>
4 7330. 0.0320 0.676 0.00860 0.115 <NA>
5 7540 0.0332 0.669 0.00906 0.118 <NA>
6 7750 0.0345 0.662 0.00955 0.121 <NA>
7 7960. 0.0358 0.655 0.0101 0.124 <NA>
8 8170 0.0372 0.648 0.0106 0.126 <NA>
9 8380 0.0387 0.641 0.0112 0.129 <NA>
10 8590. 0.0401 0.634 0.0118 0.132 <NA>
# i 92 more rows
[[5]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0162 0.360 0.00222 0.0760 <NA>
2 6910 0.0173 0.356 0.00246 0.0784 <NA>
3 7120 0.0183 0.352 0.00272 0.0808 <NA>
4 7330 0.0195 0.348 0.00301 0.0834 <NA>
5 7540 0.0207 0.344 0.00333 0.0860 <NA>
6 7750 0.0219 0.340 0.00367 0.0886 <NA>
7 7960. 0.0233 0.336 0.00405 0.0914 <NA>
8 8170 0.0247 0.332 0.00445 0.0942 <NA>
9 8380 0.0261 0.328 0.00489 0.0970 <NA>
10 8590 0.0277 0.324 0.00537 0.100 <NA>
# i 92 more rows
[[6]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 0.0232 0.754 0.00538 0.0942 <NA>
2 6910 0.0242 0.745 0.00572 0.0966 <NA>
3 7120 0.0253 0.737 0.00608 0.0990 <NA>
4 7330 0.0264 0.729 0.00646 0.102 <NA>
5 7540 0.0275 0.720 0.00686 0.104 <NA>
6 7750 0.0288 0.712 0.00728 0.107 <NA>
7 7960 0.0300 0.703 0.00774 0.109 <NA>
8 8170 0.0313 0.695 0.00822 0.112 <NA>
9 8380 0.0327 0.687 0.00872 0.115 <NA>
10 8590 0.0341 0.679 0.00926 0.118 <NA>
# i 92 more rows
[[1]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0112 1943. 3795. 11827. <NA>
2 6910 0.0123 1957. 3966. 12038. <NA>
3 7120. 0.0135 1970. 4139. 12247. <NA>
4 7330. 0.0148 1982. 4314. 12453. <NA>
5 7540 0.0162 1993. 4491. 12658. <NA>
6 7750 0.0177 2003. 4670. 12861. <NA>
7 7960. 0.0192 2011. 4851. 13061. <NA>
8 8170 0.0208 2019. 5034. 13260. <NA>
9 8380 0.0225 2025. 5218. 13458. <NA>
10 8590 0.0244 2031. 5404. 13654. <NA>
# i 92 more rows
[[2]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.00589 1532. 4280. 10487. <NA>
2 6910 0.00694 1541. 4464. 10697. <NA>
3 7120. 0.00812 1549. 4648. 10906. <NA>
4 7330. 0.00942 1556. 4835. 11113. <NA>
5 7418. 0.01 1559. 4913. 11200. <NA>
6 7540 0.0109 1563. 5022. 11320. <NA>
7 7750 0.0124 1569. 5211. 11526. <NA>
8 7960. 0.0141 1575. 5401. 11731. <NA>
9 8170 0.0160 1580. 5593. 11935. <NA>
10 8380 0.0180 1584. 5785. 12139. <NA>
# i 93 more rows
[[3]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.00906 1850. 3900. 11510. <NA>
2 6891. 0.01 1860. 4060. 11697. <NA>
3 6910 0.0101 1861. 4076. 11716. <NA>
4 7120. 0.0112 1872. 4253. 11920. <NA>
5 7330. 0.0124 1881. 4432. 12122. <NA>
6 7540 0.0137 1890. 4614. 12322. <NA>
7 7750 0.0151 1897. 4797. 12521. <NA>
8 7960. 0.0166 1903. 4982. 12719. <NA>
9 8170 0.0182 1909. 5168. 12915. <NA>
10 8380 0.0199 1913. 5357. 13110. <NA>
# i 93 more rows
[[4]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0286 3810. 2198. 20424. <NA>
2 6910 0.0297 3771. 2371. 20139. <NA>
3 7120. 0.0308 3732. 2548. 19892. <NA>
4 7330. 0.0320 3694. 2730. 19680. <NA>
5 7540 0.0332 3655. 2916. 19497. <NA>
6 7750 0.0345 3616. 3105. 19341. <NA>
7 7960. 0.0358 3578. 3299. 19209. <NA>
8 8170 0.0372 3539. 3495. 19097. <NA>
9 8380 0.0387 3501. 3695. 19005. <NA>
10 8590. 0.0401 3463. 3898. 18929. <NA>
# i 92 more rows
[[5]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700. 0.0162 3058. 2739. 16388. <NA>
2 6910 0.0173 3022. 2932. 16284. <NA>
3 7120 0.0183 2987. 3129. 16202. <NA>
4 7330 0.0195 2952. 3329. 16139. <NA>
5 7540 0.0207 2917. 3532. 16095. <NA>
6 7750 0.0219 2883. 3739. 16066. <NA>
7 7960. 0.0233 2848. 3947. 16051. <NA>
8 8170 0.0247 2815. 4159. 16049. <NA>
9 8380 0.0261 2781. 4373. 16059. <NA>
10 8590 0.0277 2748. 4589. 16079. <NA>
# i 92 more rows
[[6]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 6700 0.0232 3570. 2358. 19039. <NA>
2 6910 0.0242 3530. 2539. 18806. <NA>
3 7120 0.0253 3490. 2725. 18606. <NA>
4 7330 0.0264 3450. 2914. 18437. <NA>
5 7540 0.0275 3410. 3108. 18294. <NA>
6 7750 0.0288 3370. 3305. 18174. <NA>
7 7960 0.0300 3331. 3505. 18076. <NA>
8 8170 0.0313 3292. 3709. 17995. <NA>
9 8380 0.0327 3253. 3916. 17932. <NA>
10 8590 0.0341 3214. 4126. 17884. <NA>
# i 92 more rows
[[1]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.00253 2.22 0.0000327 0.178 <NA>
2 95.9 0.01 0.748 0.00232 0.0426 <NA>
3 96.0 0.0106 0.716 0.00262 0.0426 <NA>
4 98.0 0.0207 0.482 0.00811 0.0525 <NA>
5 100. 0.0321 0.400 0.0148 0.0690 <NA>
6 102. 0.0444 0.358 0.0223 0.0877 <NA>
7 104. 0.0575 0.332 0.0305 0.107 <NA>
8 106. 0.0712 0.312 0.0393 0.127 <NA>
9 108. 0.0853 0.296 0.0487 0.147 <NA>
10 110. 0.0998 0.282 0.0587 0.167 <NA>
# i 93 more rows
[[2]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.0106 0.355 0.00134 0.0538 <NA>
2 96.0 0.0152 0.307 0.00284 0.0591 <NA>
3 98.0 0.0210 0.270 0.00520 0.0662 <NA>
4 100. 0.0279 0.241 0.00854 0.0748 <NA>
5 102. 0.0359 0.219 0.0129 0.0850 <NA>
6 104. 0.0450 0.201 0.0183 0.0967 <NA>
7 106. 0.0552 0.188 0.0247 0.110 <NA>
8 108. 0.0664 0.178 0.0320 0.124 <NA>
9 110. 0.0785 0.170 0.0402 0.140 <NA>
10 112. 0.0914 0.164 0.0491 0.156 <NA>
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.0109 1.04 0.00143 0.0781 <NA>
2 96.0 0.0153 0.844 0.00295 0.0750 <NA>
3 98.0 0.0205 0.702 0.00527 0.0766 <NA>
4 100. 0.0267 0.597 0.00844 0.0813 <NA>
5 102. 0.0338 0.519 0.0125 0.0882 <NA>
6 104. 0.0419 0.459 0.0175 0.0971 <NA>
7 106. 0.0509 0.414 0.0233 0.108 <NA>
8 108. 0.0608 0.379 0.0299 0.120 <NA>
9 110. 0.0717 0.352 0.0373 0.133 <NA>
10 112. 0.0834 0.330 0.0455 0.148 <NA>
# i 92 more rows
[[1]]
# A tibble: 103 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.00253 1.69 90.7 97.4 <NA>
2 95.9 0.01 1.62 92.7 99.1 <NA>
3 96.0 0.0106 1.62 92.9 99.2 <NA>
4 98.0 0.0207 1.82 94.5 102. <NA>
5 100. 0.0321 2.11 95.9 104. <NA>
6 102. 0.0444 2.43 97.3 107. <NA>
7 104. 0.0575 2.75 98.7 109. <NA>
8 106. 0.0712 3.06 100. 112. <NA>
9 108. 0.0853 3.35 102. 115. <NA>
10 110. 0.0998 3.62 103. 117. <NA>
# i 93 more rows
[[2]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.0106 4.78 85.1 104. <NA>
2 96.0 0.0152 4.50 87.6 105. <NA>
3 98.0 0.0210 4.29 89.9 107. <NA>
4 100. 0.0279 4.12 92.2 108. <NA>
5 102. 0.0359 4.01 94.4 110. <NA>
6 104. 0.0450 3.94 96.5 112. <NA>
7 106. 0.0552 3.91 98.6 114. <NA>
8 108. 0.0664 3.91 101. 116. <NA>
9 110. 0.0785 3.95 102. 118. <NA>
10 112. 0.0914 4.01 104. 120. <NA>
# i 92 more rows
[[3]]
# A tibble: 102 x 6
x prob std_err lower_bound upper_bound cdf_estimation_method
* <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 94 0.0109 5.64 83.6 106. <NA>
2 96.0 0.0153 5.24 86.2 107. <NA>
3 98.0 0.0205 4.91 88.8 108. <NA>
4 100. 0.0267 4.65 91.3 110. <NA>
5 102. 0.0338 4.44 93.6 111. <NA>
6 104. 0.0419 4.30 95.9 113. <NA>
7 106. 0.0509 4.20 98.0 114. <NA>
8 108. 0.0608 4.14 100. 116. <NA>
9 110. 0.0717 4.12 102. 118. <NA>
10 112. 0.0834 4.13 104. 120. <NA>
# i 92 more rows
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.