tests/testthat/_snaps/confidence_intervals.md

confint_betabinom remains stable

[[1]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700.  1.00 0.0183    0.000674      0.0927 johnson              
 2 6910   1.06 0.0199    0.000859      0.0958 johnson              
 3 7120.  1.13 0.0216    0.00108       0.0990 johnson              
 4 7330.  1.20 0.0234    0.00134       0.102  johnson              
 5 7540   1.27 0.0252    0.00165       0.106  johnson              
 6 7750   1.34 0.0272    0.00201       0.109  johnson              
 7 7960.  1.42 0.0293    0.00242       0.113  johnson              
 8 8170   1.51 0.0314    0.00289       0.117  johnson              
 9 8380   1.59 0.0336    0.00341       0.121  johnson              
10 8590   1.68 0.0360    0.00401       0.124  johnson              
# i 92 more rows

[[2]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.711 0.0107    0.000128      0.0767 johnson              
 2 6910  0.772 0.0123    0.000200      0.0802 johnson              
 3 7120. 0.838 0.0140    0.000302      0.0840 johnson              
 4 7330. 0.911 0.0159    0.000445      0.0879 johnson              
 5 7540  0.989 0.0179    0.000636      0.0920 johnson              
 6 7750  1.07  0.0201    0.000887      0.0962 johnson              
 7 7960. 1.16  0.0225    0.00121       0.101  johnson              
 8 8170  1.26  0.0250    0.00161       0.105  johnson              
 9 8380  1.36  0.0276    0.00209       0.110  johnson              
10 8590  1.47  0.0305    0.00268       0.115  johnson              
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.911 0.0159    0.000445      0.0879 johnson              
 2 6910  0.971 0.0175    0.000589      0.0910 johnson              
 3 7120. 1.04  0.0192    0.000770      0.0943 johnson              
 4 7330. 1.10  0.0209    0.000991      0.0978 johnson              
 5 7540  1.18  0.0228    0.00126       0.101  johnson              
 6 7750  1.25  0.0248    0.00158       0.105  johnson              
 7 7960. 1.33  0.0269    0.00195       0.109  johnson              
 8 8170  1.42  0.0291    0.00239       0.113  johnson              
 9 8380  1.51  0.0314    0.00290       0.117  johnson              
10 8590  1.60  0.0339    0.00347       0.121  johnson              
# i 92 more rows

[[4]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700   1.39 0.0284     0.00225       0.112 johnson              
 2 6910   1.43 0.0295     0.00248       0.113 johnson              
 3 7120.  1.48 0.0307     0.00272       0.115 johnson              
 4 7330.  1.52 0.0318     0.00299       0.118 johnson              
 5 7540   1.57 0.0331     0.00328       0.120 johnson              
 6 7750.  1.62 0.0343     0.00359       0.122 johnson              
 7 7960.  1.67 0.0357     0.00393       0.124 johnson              
 8 8170.  1.72 0.0370     0.00429       0.126 johnson              
 9 8380   1.78 0.0385     0.00469       0.129 johnson              
10 8590.  1.83 0.0399     0.00511       0.131 johnson              
# i 92 more rows

[[5]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700   1.20 0.0233     0.00133       0.102 johnson              
 2 6910   1.25 0.0246     0.00155       0.105 johnson              
 3 7120.  1.30 0.0260     0.00179       0.107 johnson              
 4 7330.  1.35 0.0275     0.00206       0.110 johnson              
 5 7540   1.41 0.0290     0.00236       0.112 johnson              
 6 7750   1.47 0.0305     0.00269       0.115 johnson              
 7 7960   1.54 0.0322     0.00307       0.118 johnson              
 8 8170   1.60 0.0339     0.00348       0.121 johnson              
 9 8380.  1.67 0.0357     0.00394       0.124 johnson              
10 8590   1.74 0.0376     0.00444       0.127 johnson              
# i 92 more rows

[[6]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  6700  1.33 0.0268     0.00192       0.109 johnson              
 2  6910  1.37 0.0279     0.00214       0.111 johnson              
 3  7120  1.42 0.0291     0.00238       0.113 johnson              
 4  7330  1.46 0.0303     0.00265       0.115 johnson              
 5  7540  1.51 0.0316     0.00294       0.117 johnson              
 6  7750  1.57 0.0329     0.00325       0.119 johnson              
 7  7960  1.62 0.0343     0.00359       0.122 johnson              
 8  8170  1.67 0.0358     0.00396       0.124 johnson              
 9  8380  1.73 0.0373     0.00437       0.127 johnson              
10  8590  1.79 0.0389     0.00480       0.129 johnson              
# i 92 more rows
[[1]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700.  1.00 0.0183       2013.      12248. johnson              
 2 6910   1.06 0.0199       2199.      12404. johnson              
 3 7120.  1.13 0.0216       2390.      12563. johnson              
 4 7330.  1.20 0.0234       2587.      12724. johnson              
 5 7540   1.27 0.0252       2788.      12886. johnson              
 6 7750   1.34 0.0272       2994.      13050. johnson              
 7 7960.  1.42 0.0293       3203.      13216. johnson              
 8 8170   1.51 0.0314       3416.      13383. johnson              
 9 8380   1.59 0.0336       3631.      13551. johnson              
10 8590   1.68 0.0360       3848.      13721. johnson              
# i 92 more rows

[[2]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.711 0.0107       3047.      11139. johnson              
 2 6910  0.772 0.0123       3258.      11295. johnson              
 3 7120. 0.838 0.0140       3475.      11457. johnson              
 4 7330. 0.911 0.0159       3697.      11624. johnson              
 5 7540  0.989 0.0179       3921.      11796. johnson              
 6 7750  1.07  0.0201       4147.      11973. johnson              
 7 7960. 1.16  0.0225       4375.      12153. johnson              
 8 8170  1.26  0.0250       4603.      12337. johnson              
 9 8380  1.36  0.0276       4830.      12525. johnson              
10 8590  1.47  0.0305       5057.      12716. johnson              
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.911 0.0159       2114.      11883. johnson              
 2 6910  0.971 0.0175       2314.      12033. johnson              
 3 7120. 1.04  0.0192       2522.      12186. johnson              
 4 7330. 1.10  0.0209       2735.      12341. johnson              
 5 7540  1.18  0.0228       2953.      12499. johnson              
 6 7750  1.25  0.0248       3175.      12660. johnson              
 7 7960. 1.33  0.0269       3401.      12823. johnson              
 8 8170  1.42  0.0291       3630.      12988. johnson              
 9 8380  1.51  0.0314       3861.      13156. johnson              
10 8590  1.60  0.0339       4094.      13325. johnson              
# i 92 more rows

[[4]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700   1.39 0.0284      -7252.      14421. johnson              
 2 6910   1.43 0.0295      -6726.      14521. johnson              
 3 7120.  1.48 0.0307      -6207.      14622. johnson              
 4 7330.  1.52 0.0318      -5695.      14725. johnson              
 5 7540   1.57 0.0331      -5189.      14828. johnson              
 6 7750.  1.62 0.0343      -4690.      14933. johnson              
 7 7960.  1.67 0.0357      -4198.      15039. johnson              
 8 8170.  1.72 0.0370      -3712.      15146. johnson              
 9 8380   1.78 0.0385      -3232.      15255. johnson              
10 8590.  1.83 0.0399      -2759.      15364. johnson              
# i 92 more rows

[[5]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1 6700   1.20 0.0233     -2439.       13197. johnson              
 2 6910   1.25 0.0246     -2031.       13318. johnson              
 3 7120.  1.30 0.0260     -1628.       13442. johnson              
 4 7330.  1.35 0.0275     -1230.       13567. johnson              
 5 7540   1.41 0.0290      -838.       13695. johnson              
 6 7750   1.47 0.0305      -451.       13824. johnson              
 7 7960   1.54 0.0322       -69.4      13955. johnson              
 8 8170   1.60 0.0339       307.       14087. johnson              
 9 8380.  1.67 0.0357       678.       14222. johnson              
10 8590   1.74 0.0376      1044.       14358. johnson              
# i 92 more rows

[[6]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  6700  1.33 0.0268      -6314.      13987. johnson              
 2  6910  1.37 0.0279      -5784.      14090. johnson              
 3  7120  1.42 0.0291      -5262.      14194. johnson              
 4  7330  1.46 0.0303      -4748.      14299. johnson              
 5  7540  1.51 0.0316      -4241.      14406. johnson              
 6  7750  1.57 0.0329      -3742.      14514. johnson              
 7  7960  1.62 0.0343      -3250.      14624. johnson              
 8  8170  1.67 0.0358      -2766.      14735. johnson              
 9  8380  1.73 0.0373      -2289.      14847. johnson              
10  8590  1.79 0.0389      -1819.      14962. johnson              
# i 92 more rows
[[1]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.23 0.0128    0.000769      0.0561 johnson              
 2  96.0  1.77 0.0203    0.00243       0.0696 johnson              
 3  98.0  2.39 0.0288    0.00523       0.0837 johnson              
 4 100.   3.07 0.0383    0.00912       0.0983 johnson              
 5 102.   3.82 0.0486    0.0140        0.113  johnson              
 6 104.   4.61 0.0595    0.0199        0.129  johnson              
 7 106.   5.45 0.0711    0.0266        0.145  johnson              
 8 108.   6.33 0.0832    0.0340        0.161  johnson              
 9 110.   7.24 0.0959    0.0422        0.177  johnson              
10 111.   7.54 0.1       0.0449        0.182  johnson              
# i 92 more rows

[[2]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.53 0.0170     0.00160      0.0639 johnson              
 2  96.0  1.92 0.0224     0.00304      0.0731 johnson              
 3  98.0  2.38 0.0287     0.00517      0.0834 johnson              
 4 100.   2.90 0.0359     0.00808      0.0947 johnson              
 5 102.   3.49 0.0441     0.0118       0.107  johnson              
 6 104.   4.15 0.0532     0.0165       0.120  johnson              
 7 106.   4.88 0.0632     0.0220       0.134  johnson              
 8 108.   5.66 0.0741     0.0284       0.149  johnson              
 9 110.   6.51 0.0858     0.0356       0.164  johnson              
10 112.   7.41 0.0982     0.0437       0.180  johnson              
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.62 0.0182     0.00189      0.0660 johnson              
 2  96.0  1.99 0.0234     0.00335      0.0748 johnson              
 3  98.0  2.42 0.0293     0.00541      0.0844 johnson              
 4 100.   2.91 0.0361     0.00815      0.0949 johnson              
 5 102.   3.46 0.0437     0.0116       0.106  johnson              
 6 104.   4.07 0.0521     0.0159       0.118  johnson              
 7 106.   4.74 0.0614     0.0209       0.131  johnson              
 8 108.   5.48 0.0715     0.0268       0.145  johnson              
 9 110.   6.27 0.0824     0.0335       0.159  johnson              
10 112.   7.11 0.0941     0.0410       0.175  johnson              
# i 92 more rows
[[1]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.23 0.0128        89.3        103. johnson              
 2  96.0  1.77 0.0203        90.3        106. johnson              
 3  98.0  2.39 0.0288        91.5        108. johnson              
 4 100.   3.07 0.0383        92.9        110. johnson              
 5 102.   3.82 0.0486        94.4        113. johnson              
 6 104.   4.61 0.0595        95.9        115. johnson              
 7 106.   5.45 0.0711        97.5        117. johnson              
 8 108.   6.33 0.0832        99.1        119. johnson              
 9 110.   7.24 0.0959       101.         122. johnson              
10 111.   7.54 0.1          101.         122. johnson              
# i 92 more rows

[[2]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.53 0.0170        82.6        106. johnson              
 2  96.0  1.92 0.0224        85.0        108. johnson              
 3  98.0  2.38 0.0287        87.3        110. johnson              
 4 100.   2.90 0.0359        89.5        111. johnson              
 5 102.   3.49 0.0441        91.7        113. johnson              
 6 104.   4.15 0.0532        93.8        115. johnson              
 7 106.   4.88 0.0632        95.8        117. johnson              
 8 108.   5.66 0.0741        97.9        119. johnson              
 9 110.   6.51 0.0858        99.9        121. johnson              
10 112.   7.41 0.0982       102.         123. johnson              
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x  rank   prob lower_bound upper_bound cdf_estimation_method
 * <dbl> <dbl>  <dbl>       <dbl>       <dbl> <chr>                
 1  94    1.62 0.0182        82.5        107. johnson              
 2  96.0  1.99 0.0234        84.6        109. johnson              
 3  98.0  2.42 0.0293        86.7        110. johnson              
 4 100.   2.91 0.0361        88.8        112. johnson              
 5 102.   3.46 0.0437        90.9        114. johnson              
 6 104.   4.07 0.0521        93.0        116. johnson              
 7 106.   4.74 0.0614        95.1        118. johnson              
 8 108.   5.48 0.0715        97.2        119. johnson              
 9 110.   6.27 0.0824        99.2        121. johnson              
10 112.   7.11 0.0941       101.         123. johnson              
# i 92 more rows

confint_fisher remains stable

[[1]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0112   0.916     0.00186      0.0655 <NA>                 
 2 6910  0.0123   0.895     0.00214      0.0691 <NA>                 
 3 7120. 0.0135   0.875     0.00245      0.0729 <NA>                 
 4 7330. 0.0148   0.855     0.00279      0.0767 <NA>                 
 5 7540  0.0162   0.835     0.00317      0.0805 <NA>                 
 6 7750  0.0177   0.817     0.00359      0.0845 <NA>                 
 7 7960. 0.0192   0.799     0.00404      0.0886 <NA>                 
 8 8170  0.0208   0.781     0.00454      0.0927 <NA>                 
 9 8380  0.0225   0.764     0.00509      0.0969 <NA>                 
10 8590  0.0244   0.747     0.00568      0.101  <NA>                 
# i 92 more rows

[[2]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.00589   0.431    0.000385      0.0472 <NA>                 
 2 6910  0.00694   0.421    0.000511      0.0509 <NA>                 
 3 7120. 0.00812   0.410    0.000668      0.0549 <NA>                 
 4 7330. 0.00942   0.401    0.000862      0.0589 <NA>                 
 5 7418. 0.01      0.397    0.000956      0.0607 <NA>                 
 6 7540  0.0109    0.391    0.00110       0.0631 <NA>                 
 7 7750  0.0124    0.382    0.00138       0.0675 <NA>                 
 8 7960. 0.0141    0.373    0.00172       0.0719 <NA>                 
 9 8170  0.0160    0.365    0.00212       0.0765 <NA>                 
10 8380  0.0180    0.357    0.00259       0.0812 <NA>                 
# i 93 more rows

[[3]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.00906   0.982     0.00133      0.0590 <NA>                 
 2 6891. 0.01      0.961     0.00153      0.0623 <NA>                 
 3 6910  0.0101    0.959     0.00156      0.0626 <NA>                 
 4 7120. 0.0112    0.936     0.00181      0.0663 <NA>                 
 5 7330. 0.0124    0.913     0.00210      0.0701 <NA>                 
 6 7540  0.0137    0.892     0.00242      0.0740 <NA>                 
 7 7750  0.0151    0.871     0.00277      0.0780 <NA>                 
 8 7960. 0.0166    0.851     0.00317      0.0821 <NA>                 
 9 8170  0.0182    0.831     0.00362      0.0863 <NA>                 
10 8380  0.0199    0.813     0.00410      0.0906 <NA>                 
# i 93 more rows

[[4]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0286   0.698     0.00735       0.108 <NA>                 
 2 6910  0.0297   0.691     0.00775       0.110 <NA>                 
 3 7120. 0.0308   0.684     0.00816       0.113 <NA>                 
 4 7330. 0.0320   0.676     0.00860       0.115 <NA>                 
 5 7540  0.0332   0.669     0.00906       0.118 <NA>                 
 6 7750  0.0345   0.662     0.00955       0.121 <NA>                 
 7 7960. 0.0358   0.655     0.0101        0.124 <NA>                 
 8 8170  0.0372   0.648     0.0106        0.126 <NA>                 
 9 8380  0.0387   0.641     0.0112        0.129 <NA>                 
10 8590. 0.0401   0.634     0.0118        0.132 <NA>                 
# i 92 more rows

[[5]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0162   0.360     0.00222      0.0760 <NA>                 
 2 6910  0.0173   0.356     0.00246      0.0784 <NA>                 
 3 7120  0.0183   0.352     0.00272      0.0808 <NA>                 
 4 7330  0.0195   0.348     0.00301      0.0834 <NA>                 
 5 7540  0.0207   0.344     0.00333      0.0860 <NA>                 
 6 7750  0.0219   0.340     0.00367      0.0886 <NA>                 
 7 7960. 0.0233   0.336     0.00405      0.0914 <NA>                 
 8 8170  0.0247   0.332     0.00445      0.0942 <NA>                 
 9 8380  0.0261   0.328     0.00489      0.0970 <NA>                 
10 8590  0.0277   0.324     0.00537      0.100  <NA>                 
# i 92 more rows

[[6]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  6700 0.0232   0.754     0.00538      0.0942 <NA>                 
 2  6910 0.0242   0.745     0.00572      0.0966 <NA>                 
 3  7120 0.0253   0.737     0.00608      0.0990 <NA>                 
 4  7330 0.0264   0.729     0.00646      0.102  <NA>                 
 5  7540 0.0275   0.720     0.00686      0.104  <NA>                 
 6  7750 0.0288   0.712     0.00728      0.107  <NA>                 
 7  7960 0.0300   0.703     0.00774      0.109  <NA>                 
 8  8170 0.0313   0.695     0.00822      0.112  <NA>                 
 9  8380 0.0327   0.687     0.00872      0.115  <NA>                 
10  8590 0.0341   0.679     0.00926      0.118  <NA>                 
# i 92 more rows
[[1]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0112   1943.       3795.      11827. <NA>                 
 2 6910  0.0123   1957.       3966.      12038. <NA>                 
 3 7120. 0.0135   1970.       4139.      12247. <NA>                 
 4 7330. 0.0148   1982.       4314.      12453. <NA>                 
 5 7540  0.0162   1993.       4491.      12658. <NA>                 
 6 7750  0.0177   2003.       4670.      12861. <NA>                 
 7 7960. 0.0192   2011.       4851.      13061. <NA>                 
 8 8170  0.0208   2019.       5034.      13260. <NA>                 
 9 8380  0.0225   2025.       5218.      13458. <NA>                 
10 8590  0.0244   2031.       5404.      13654. <NA>                 
# i 92 more rows

[[2]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.00589   1532.       4280.      10487. <NA>                 
 2 6910  0.00694   1541.       4464.      10697. <NA>                 
 3 7120. 0.00812   1549.       4648.      10906. <NA>                 
 4 7330. 0.00942   1556.       4835.      11113. <NA>                 
 5 7418. 0.01      1559.       4913.      11200. <NA>                 
 6 7540  0.0109    1563.       5022.      11320. <NA>                 
 7 7750  0.0124    1569.       5211.      11526. <NA>                 
 8 7960. 0.0141    1575.       5401.      11731. <NA>                 
 9 8170  0.0160    1580.       5593.      11935. <NA>                 
10 8380  0.0180    1584.       5785.      12139. <NA>                 
# i 93 more rows

[[3]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.00906   1850.       3900.      11510. <NA>                 
 2 6891. 0.01      1860.       4060.      11697. <NA>                 
 3 6910  0.0101    1861.       4076.      11716. <NA>                 
 4 7120. 0.0112    1872.       4253.      11920. <NA>                 
 5 7330. 0.0124    1881.       4432.      12122. <NA>                 
 6 7540  0.0137    1890.       4614.      12322. <NA>                 
 7 7750  0.0151    1897.       4797.      12521. <NA>                 
 8 7960. 0.0166    1903.       4982.      12719. <NA>                 
 9 8170  0.0182    1909.       5168.      12915. <NA>                 
10 8380  0.0199    1913.       5357.      13110. <NA>                 
# i 93 more rows

[[4]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0286   3810.       2198.      20424. <NA>                 
 2 6910  0.0297   3771.       2371.      20139. <NA>                 
 3 7120. 0.0308   3732.       2548.      19892. <NA>                 
 4 7330. 0.0320   3694.       2730.      19680. <NA>                 
 5 7540  0.0332   3655.       2916.      19497. <NA>                 
 6 7750  0.0345   3616.       3105.      19341. <NA>                 
 7 7960. 0.0358   3578.       3299.      19209. <NA>                 
 8 8170  0.0372   3539.       3495.      19097. <NA>                 
 9 8380  0.0387   3501.       3695.      19005. <NA>                 
10 8590. 0.0401   3463.       3898.      18929. <NA>                 
# i 92 more rows

[[5]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1 6700. 0.0162   3058.       2739.      16388. <NA>                 
 2 6910  0.0173   3022.       2932.      16284. <NA>                 
 3 7120  0.0183   2987.       3129.      16202. <NA>                 
 4 7330  0.0195   2952.       3329.      16139. <NA>                 
 5 7540  0.0207   2917.       3532.      16095. <NA>                 
 6 7750  0.0219   2883.       3739.      16066. <NA>                 
 7 7960. 0.0233   2848.       3947.      16051. <NA>                 
 8 8170  0.0247   2815.       4159.      16049. <NA>                 
 9 8380  0.0261   2781.       4373.      16059. <NA>                 
10 8590  0.0277   2748.       4589.      16079. <NA>                 
# i 92 more rows

[[6]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  6700 0.0232   3570.       2358.      19039. <NA>                 
 2  6910 0.0242   3530.       2539.      18806. <NA>                 
 3  7120 0.0253   3490.       2725.      18606. <NA>                 
 4  7330 0.0264   3450.       2914.      18437. <NA>                 
 5  7540 0.0275   3410.       3108.      18294. <NA>                 
 6  7750 0.0288   3370.       3305.      18174. <NA>                 
 7  7960 0.0300   3331.       3505.      18076. <NA>                 
 8  8170 0.0313   3292.       3709.      17995. <NA>                 
 9  8380 0.0327   3253.       3916.      17932. <NA>                 
10  8590 0.0341   3214.       4126.      17884. <NA>                 
# i 92 more rows
[[1]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.00253   2.22    0.0000327      0.178  <NA>                 
 2  95.9 0.01      0.748   0.00232        0.0426 <NA>                 
 3  96.0 0.0106    0.716   0.00262        0.0426 <NA>                 
 4  98.0 0.0207    0.482   0.00811        0.0525 <NA>                 
 5 100.  0.0321    0.400   0.0148         0.0690 <NA>                 
 6 102.  0.0444    0.358   0.0223         0.0877 <NA>                 
 7 104.  0.0575    0.332   0.0305         0.107  <NA>                 
 8 106.  0.0712    0.312   0.0393         0.127  <NA>                 
 9 108.  0.0853    0.296   0.0487         0.147  <NA>                 
10 110.  0.0998    0.282   0.0587         0.167  <NA>                 
# i 93 more rows

[[2]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.0106   0.355     0.00134      0.0538 <NA>                 
 2  96.0 0.0152   0.307     0.00284      0.0591 <NA>                 
 3  98.0 0.0210   0.270     0.00520      0.0662 <NA>                 
 4 100.  0.0279   0.241     0.00854      0.0748 <NA>                 
 5 102.  0.0359   0.219     0.0129       0.0850 <NA>                 
 6 104.  0.0450   0.201     0.0183       0.0967 <NA>                 
 7 106.  0.0552   0.188     0.0247       0.110  <NA>                 
 8 108.  0.0664   0.178     0.0320       0.124  <NA>                 
 9 110.  0.0785   0.170     0.0402       0.140  <NA>                 
10 112.  0.0914   0.164     0.0491       0.156  <NA>                 
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.0109   1.04      0.00143      0.0781 <NA>                 
 2  96.0 0.0153   0.844     0.00295      0.0750 <NA>                 
 3  98.0 0.0205   0.702     0.00527      0.0766 <NA>                 
 4 100.  0.0267   0.597     0.00844      0.0813 <NA>                 
 5 102.  0.0338   0.519     0.0125       0.0882 <NA>                 
 6 104.  0.0419   0.459     0.0175       0.0971 <NA>                 
 7 106.  0.0509   0.414     0.0233       0.108  <NA>                 
 8 108.  0.0608   0.379     0.0299       0.120  <NA>                 
 9 110.  0.0717   0.352     0.0373       0.133  <NA>                 
10 112.  0.0834   0.330     0.0455       0.148  <NA>                 
# i 92 more rows
[[1]]
# A tibble: 103 x 6
       x    prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>   <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.00253    1.69        90.7        97.4 <NA>                 
 2  95.9 0.01       1.62        92.7        99.1 <NA>                 
 3  96.0 0.0106     1.62        92.9        99.2 <NA>                 
 4  98.0 0.0207     1.82        94.5       102.  <NA>                 
 5 100.  0.0321     2.11        95.9       104.  <NA>                 
 6 102.  0.0444     2.43        97.3       107.  <NA>                 
 7 104.  0.0575     2.75        98.7       109.  <NA>                 
 8 106.  0.0712     3.06       100.        112.  <NA>                 
 9 108.  0.0853     3.35       102.        115.  <NA>                 
10 110.  0.0998     3.62       103.        117.  <NA>                 
# i 93 more rows

[[2]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.0106    4.78        85.1        104. <NA>                 
 2  96.0 0.0152    4.50        87.6        105. <NA>                 
 3  98.0 0.0210    4.29        89.9        107. <NA>                 
 4 100.  0.0279    4.12        92.2        108. <NA>                 
 5 102.  0.0359    4.01        94.4        110. <NA>                 
 6 104.  0.0450    3.94        96.5        112. <NA>                 
 7 106.  0.0552    3.91        98.6        114. <NA>                 
 8 108.  0.0664    3.91       101.         116. <NA>                 
 9 110.  0.0785    3.95       102.         118. <NA>                 
10 112.  0.0914    4.01       104.         120. <NA>                 
# i 92 more rows

[[3]]
# A tibble: 102 x 6
       x   prob std_err lower_bound upper_bound cdf_estimation_method
 * <dbl>  <dbl>   <dbl>       <dbl>       <dbl> <chr>                
 1  94   0.0109    5.64        83.6        106. <NA>                 
 2  96.0 0.0153    5.24        86.2        107. <NA>                 
 3  98.0 0.0205    4.91        88.8        108. <NA>                 
 4 100.  0.0267    4.65        91.3        110. <NA>                 
 5 102.  0.0338    4.44        93.6        111. <NA>                 
 6 104.  0.0419    4.30        95.9        113. <NA>                 
 7 106.  0.0509    4.20        98.0        114. <NA>                 
 8 108.  0.0608    4.14       100.         116. <NA>                 
 9 110.  0.0717    4.12       102.         118. <NA>                 
10 112.  0.0834    4.13       104.         120. <NA>                 
# i 92 more rows


Try the weibulltools package in your browser

Any scripts or data that you put into this service are public.

weibulltools documentation built on April 5, 2023, 5:10 p.m.