iwishmom | R Documentation |
When iw = 0
, the function calculates E[\prod_{j=1}^r \mbox{tr}(W^{-j})^{f_j}]
,
where W \sim W_m^{\beta}(n, S)
. When iw != 0
,
the function calculates E[\prod_{j=1}^r \mbox{tr}(W^{-j})^{f_j}W^{-iw}]
.
iwishmom(n, S, f, iw = 0, alpha = 2)
n |
The degrees of freedom of the beta-Wishart matrix |
S |
The covariance matrix of the beta-Wishart matrix |
f |
A vector of nonnegative integers |
iw |
The power of the inverse beta-Wishart matrix |
alpha |
The type of Wishart distribution
|
When iw = 0
, it returns E[\prod_{j=1}^r \mbox{tr}(W^{-j})^{f_j}]
.
When iw != 0
, it returns E[\prod_{j=1}^r \mbox{tr}(W^{-j})^{f_j}W^{-iw}]
.
# Example 1: For E[tr(W^{-1})^2] with W ~ W_m^1(n,S),
# where n and S are defined below:
n <- 20
S <- matrix(c(25, 49,
49, 109), nrow=2, ncol=2)
iwishmom(n, S, 2) # iw = 0, for real Wishart distribution
# Example 2: For E[tr(W^{-1})^2*tr(W^{-3})W^{-2}] with W ~ W_m^1(n,S),
# where n and S are defined below:
n <- 20
S <- matrix(c(25, 49,
49, 109), nrow=2, ncol=2)
iwishmom(n, S, c(2, 0, 1), 2, 2) # iw = 2, for real Wishart distribution
# Example 3: For E[tr(W^{-1})^2*tr(W^{-3})] with W ~ W_m^2(n,S),
# where n and S are defined below:
# Hermitian S for the complex case
n <- 20
S <- matrix(c(25, 49 + 2i,
49 - 2i, 109), nrow=2, ncol=2)
iwishmom(n, S, c(2, 0, 1), 0, 1) # iw = 0, for complex Wishart distribution
# Example 4: For E[tr(W^{-1})*tr(W^{-2})^2*tr(W^{-3})^2*W^{-1}] with W ~ W_m^2(n,S),
# where n and S are defined below:
n <- 30
S <- matrix(c(25, 49 + 2i,
49 - 2i, 109), nrow=2, ncol=2)
iwishmom(n, S, c(1, 2, 2), 1, 1) # iw = 1, for complex Wishart distribution
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.