README.md

Whisker Odds (wodds)

sensible summary statistics for big data

The goal of wodds is to make the calculations of whisker odds (wodds) easy. Wodds follow the same rules as letter-values, but with a different naming system.

Installation

You can install the development version of wodds from GitHub with:

# install.packages("devtools")
devtools::install_github("alexhallam/wodds")

Example

This is a basic example which shows you how to solve a common problem:

options(digits=1)
library(wodds)
library(knitr)
set.seed(42)
a <- rnorm(n = 1e4, 0, 1)
df_wodds <- wodds::wodds(a)
df_wodds
#> # A tibble: 11 × 3
#>    lower_value wodd_name upper_value
#>          <dbl> <chr>           <dbl>
#>  1    -0.00625 M            -0.00625
#>  2    -0.694   F             0.663  
#>  3    -1.17    E             1.16   
#>  4    -1.57    S             1.52   
#>  5    -1.88    SM            1.87   
#>  6    -2.17    SF            2.15   
#>  7    -2.41    SE            2.41   
#>  8    -2.66    S2            2.64   
#>  9    -2.86    S2M           2.88   
#> 10    -3.01    S2F           3.22   
#> 11    -3.13    S2E           3.34

Outliers beyond the last wodd are marked with O<value> in ascending order. There should rarely be more than 7 outliers when using wodds.

df_wodds_and_outs <- wodds::wodds(a, include_outliers = TRUE)
df_wodds_and_outs
#> # A tibble: 17 × 3
#>    lower_value wodd_name upper_value
#>          <dbl> <chr>           <dbl>
#>  1    -0.00625 M            -0.00625
#>  2    -0.694   F             0.663  
#>  3    -1.17    E             1.16   
#>  4    -1.57    S             1.52   
#>  5    -1.88    SM            1.87   
#>  6    -2.17    SF            2.15   
#>  7    -2.41    SE            2.41   
#>  8    -2.66    S2            2.64   
#>  9    -2.86    S2M           2.88   
#> 10    -3.01    S2F           3.22   
#> 11    -3.13    S2E           3.34   
#> 12    -3.14    O1            3.34   
#> 13    -3.18    O2            3.47   
#> 14    -3.20    O3            3.50   
#> 15    -3.33    O4            3.58   
#> 16    -3.37    O5            4.33   
#> 17    -4.04    O6           NA

Though not necessary it is possible to include tail area if additional communication or teaching is needed. It is assumed that the wodd should be explanatory enough to not need to rely on tail_area.

df_wodds_and_outs <- wodds::wodds(a, include_tail_area  = TRUE)
df_wodds_and_outs
#> # A tibble: 11 × 4
#>    tail_area lower_value wodd_name upper_value
#>        <dbl>       <dbl> <chr>           <dbl>
#>  1         2    -0.00625 M            -0.00625
#>  2         4    -0.694   F             0.663  
#>  3         8    -1.17    E             1.16   
#>  4        16    -1.57    S             1.52   
#>  5        32    -1.88    SM            1.87   
#>  6        64    -2.17    SF            2.15   
#>  7       128    -2.41    SE            2.41   
#>  8       256    -2.66    S2            2.64   
#>  9       512    -2.86    S2M           2.88   
#> 10      1024    -3.01    S2F           3.22   
#> 11      2048    -3.13    S2E           3.34

An example with all options set to TRUE.

df_wodds_and_outs <- wodds::wodds(a, include_depth = TRUE, include_tail_area = TRUE, include_outliers = TRUE)
df_wodds_and_outs
#> # A tibble: 17 × 5
#>    depth tail_area lower_value wodd_name upper_value
#>    <int>     <dbl>       <dbl> <chr>           <dbl>
#>  1     1         2    -0.00625 M            -0.00625
#>  2     2         4    -0.694   F             0.663  
#>  3     3         8    -1.17    E             1.16   
#>  4     4        16    -1.57    S             1.52   
#>  5     5        32    -1.88    SM            1.87   
#>  6     6        64    -2.17    SF            2.15   
#>  7     7       128    -2.41    SE            2.41   
#>  8     8       256    -2.66    S2            2.64   
#>  9     9       512    -2.86    S2M           2.88   
#> 10    10      1024    -3.01    S2F           3.22   
#> 11    11      2048    -3.13    S2E           3.34   
#> 12    NA        NA    -3.14    O1            3.34   
#> 13    NA        NA    -3.18    O2            3.47   
#> 14    NA        NA    -3.20    O3            3.50   
#> 15    NA        NA    -3.33    O4            3.58   
#> 16    NA        NA    -3.37    O5            4.33   
#> 17    NA        NA    -4.04    O6           NA

A knitr::kable example for publication.

knitr::kable(df_wodds_and_outs, align = 'c',digits = 3)

| depth | tail_area | lower_value | wodd_name | upper_value | |:-----:|:----------:|:------------:|:----------:|:------------:| | 1 | 2 | -0.006 | M | -0.006 | | 2 | 4 | -0.694 | F | 0.663 | | 3 | 8 | -1.169 | E | 1.155 | | 4 | 16 | -1.569 | S | 1.524 | | 5 | 32 | -1.878 | SM | 1.866 | | 6 | 64 | -2.173 | SF | 2.150 | | 7 | 128 | -2.415 | SE | 2.409 | | 8 | 256 | -2.656 | S2 | 2.637 | | 9 | 512 | -2.857 | S2M | 2.883 | | 10 | 1024 | -3.013 | S2F | 3.220 | | 11 | 2048 | -3.130 | S2E | 3.338 | | NA | NA | -3.139 | O1 | 3.339 | | NA | NA | -3.181 | O2 | 3.471 | | NA | NA | -3.200 | O3 | 3.495 | | NA | NA | -3.331 | O4 | 3.585 | | NA | NA | -3.372 | O5 | 4.328 | | NA | NA | -4.043 | O6 | NA |

Getting the depth

wodds::get_depth_from_n(n=15734L, alpha = 0.05)
#> [1] 11

Getting the sample size

wodds::get_n_from_depth(d = 11L)
#> [1] 15734

Whisker Odds and Letter-Values

Letter-Values are a fantastic tool! I think the naming could be improved. For this reason I introduce whisker odds (wodds) as an alternative naming system. My hypothesis is that with an alternative naming system the use of these descriptive statistics will be see more use. This is a rebranding of a what I think is a powerful modern statistical tool.



Try the wodds package in your browser

Any scripts or data that you put into this service are public.

wodds documentation built on April 15, 2022, 5:06 p.m.