Nothing
library(quanteda)
library(wordvector)
options(wordvector_threads = 8)
seed <- LSX::seedwords("sentiment")
corp <- data_corpus_news2014
toks <- tokens(corp, remove_punct = TRUE, remove_symbols = TRUE) %>%
tokens_remove(stopwords("en", "marimo"), padding = TRUE) %>%
tokens_select("^[a-zA-Z-]+$", valuetype = "regex", case_insensitive = FALSE,
padding = TRUE) %>%
tokens_tolower()
wov <- textmodel_word2vec(toks, dim = 100, type = "sg", min_count = 5, verbose = TRUE, iter = 10)
dov <- textmodel_doc2vec(toks, dim = 100, type = "dbow", min_count = 5, verbose = TRUE, iter = 10)
doc <- probability(dov, seed, layer = "documents")[,1]
print(toks[head(doc)])
print(toks[tail(doc)])
cor(probability(wov, seed, layer = "words", mode = "numeric")[,1],
probability(dov, seed, layer = "words", mode = "numeric")[,1])
lss0 <- LSX::as.textmodel_lss(wov, seed, spatial = FALSE)
lss <- LSX:::as.textmodel_lss(dov, seed, spatial = FALSE)
pred0 <- predict(lss0, newdata = dfm(toks, remove_padding = TRUE), rescale = FALSE,
min_n = 40)
pred <- predict(lss, newdata = dfm(toks, remove_padding = TRUE), rescale = FALSE,
min_n = 40)
pred2 <- probability(dov, seed, layer = "documents", mode = "numeric")[,1] / length(seed)
dat <- data.frame(pred0, pred, pred2, pred3 = pred + pred2, text = corp[])
plot(dat[,1:4])
cor(dat[,1:4])
View(dat)
head(dat)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.