Workflow Stages

knitr::opts_chunk$set(
  digits = 3,
  collapse = TRUE,
  comment = "#>"
)
options(digits = 3)

Workflows encompasses the three main stages of the modeling process: pre-processing of data, model fitting, and post-processing of results. This page enumerates the possible operations for each stage that have been implemented to date.

Pre-processing

The two elements allowed for pre-processing are:

You can use one or the other but not both.

Model Fitting

parsnip model specifications are the only option here, specified via add_model().

When using a preprocessor, you may need an additional formula for special model terms (e.g. for mixed models or generalized linear models). In these cases, specify that formula using add_model()'s formula argument, which will be passed to the underlying model when fit() is called.

Post-processing

Some examples of post-processing the model predictions would be: adding a probability threshold for two-class problems, calibration of probability estimates, truncating the possible range of predictions, and so on.

None of these are currently implemented but will be in coming versions.



Try the workflows package in your browser

Any scripts or data that you put into this service are public.

workflows documentation built on Oct. 13, 2021, 1:06 a.m.