Description Usage Format Source References Examples
Datasets containing the United Nations time series of the total fertility rate (TFR) for all countries of the world as available in 2012. Dataset tfr
contains estimates of the historical TFR starting with 1950; tfr_supplemental
contains a subset of countries for which data prior 1950 are available. Datasets tfrprojMed
contain the median projections. Datasets tfrproj80l
, tfrproj80u
, tfrproj95l
, and tfrproj95u
are the lower (l) and upper (u) bounds of the 80 and 95% probability intervals, respectively.
Datasets tfrprojHigh
and tfrprojLow
contain high and low variants, respectively, defined as +-1/2 child.
1 2 3 4 5 6 7 8 9 |
The datasets contain one record per country or region. It contains the following variables:
country
Name of country or region (following ISO 3166 official short names in English - see http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm and United Nations Multilingual Terminology Database - see http://unterm.un.org).
country_code
Numerical Location Code (3-digit codes following ISO 3166-1 numeric standard) - see http://en.wikipedia.org/wiki/ISO_3166-1_numeric.
1950-1955
, 1955-1960
, ...TFR in various five-year time intervals. last.observed
containing the year of the last observation for each country. The tfrproj*
datasets start at 2010-2015
. The tfr_supplemental
datasets start at 1740-1745
. Missing data have NA
values.
These datasets are based on estimates and projections of United Nations, Department of Economic and Social Affairs, Population Division (2013).
World Population Prospects: The 2012 Revision. (http://esa.un.org/unpd/wpp) Special Tabulations.
1 2 3 4 5 | data(tfr)
head(tfr)
data(tfrprojMed)
str(tfrprojMed)
|
country country_code
1 WORLD 900
2 More developed regions 901
3 Less developed regions 902
4 Least developed countries 941
5 Less developed regions, excluding least developed countries 934
6 Less developed regions, excluding China 948
1950-1955 1955-1960 1960-1965 1965-1970 1970-1975 1975-1980 1980-1985
1 4.968 4.909 5.015 4.848 4.435 3.851 3.598
2 2.829 2.809 2.681 2.389 2.151 1.921 1.844
3 6.080 5.951 6.114 5.929 5.364 4.571 4.180
4 6.549 6.608 6.697 6.750 6.750 6.683 6.548
5 6.018 5.863 6.035 5.821 5.184 4.299 3.883
6 6.066 6.150 6.124 5.956 5.640 5.245 4.850
1985-1990 1990-1995 1995-2000 2000-2005 2005-2010 2010-2015 last.observed
1 3.448 3.036 2.732 2.595 2.530 NA NA
2 1.814 1.670 1.564 1.575 1.663 NA NA
3 3.920 3.382 2.993 2.799 2.687 NA NA
4 6.204 5.775 5.364 4.927 4.531 NA NA
5 3.640 3.082 2.679 2.499 2.405 NA NA
6 4.404 3.949 3.568 3.279 3.064 NA NA
'data.frame': 236 obs. of 20 variables:
$ name : Factor w/ 236 levels "AFRICA","ASIA",..: 229 139 115 112 117 116 200 1 62 31 ...
$ country_code: int 900 901 902 941 934 948 947 903 910 108 ...
$ 2010-2015 : num 2.5 1.68 2.63 4.2 2.36 ...
$ 2015-2020 : num 2.45 1.71 2.56 3.92 2.3 ...
$ 2020-2025 : num 2.41 1.74 2.5 3.67 2.25 ...
$ 2025-2030 : num 2.37 1.78 2.45 3.46 2.21 ...
$ 2030-2035 : num 2.34 1.82 2.41 3.29 2.17 ...
$ 2035-2040 : num 2.31 1.84 2.36 3.13 2.14 ...
$ 2040-2045 : num 2.27 1.85 2.32 3 2.11 ...
$ 2045-2050 : num 2.24 1.85 2.29 2.87 2.09 ...
$ 2050-2055 : num 2.21 1.87 2.25 2.75 2.07 ...
$ 2055-2060 : num 2.18 1.88 2.22 2.65 2.05 ...
$ 2060-2065 : num 2.15 1.9 2.18 2.56 2.03 ...
$ 2065-2070 : num 2.12 1.9 2.15 2.47 2.01 ...
$ 2070-2075 : num 2.1 1.91 2.12 2.4 1.99 ...
$ 2075-2080 : num 2.07 1.91 2.09 2.33 1.98 ...
$ 2080-2085 : num 2.05 1.91 2.06 2.26 1.96 ...
$ 2085-2090 : num 2.03 1.92 2.04 2.21 1.95 ...
$ 2090-2095 : num 2.01 1.92 2.02 2.15 1.94 ...
$ 2095-2100 : num 1.99 1.93 1.99 2.11 1.93 ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.