Nothing
#
# (c) 2021 Andreas Geyer-Schulz
# Simple Genetic Algorithm in R. V 0.1
# Layer: Top-level main programs.
# Package: xega
#
#' Problem environment for a 2-dimensional quadratic parabola
#'
#' @description Problem environment for finding maxima and minima
#' of a 2-dimensional quadratic parabola.
#'
#' @return A named list
#' \itemize{
#' \item \code{$name()}: Returns the name of the problem environment.
#' \item \code{$bitlength()}: The vector of the
#' bitlengths of the parameters.
#' \item \code{$genelength()}: The number of bits of a gene.
#' \item \code{$lb()}: The vector of lower bounds
#' of the parameters.
#' \item \code{$ub()}: The vector of upper bounds of the parameters.
#' \item \code{$f(parm)}: The implementation of the function of the
#' quadratic parabola.
#' \itemize{
#' \item \code{parm}: A 2-element vector of reals.
#' \item Returns the value of the function.
#' }
#' \item \code{$describe()}: Returns the description of
#' the problem environment.
#' \item \code{$solution()}: The solutions (maxima/minima) of the
#' problem environment (if known).
#' }
#'
#' @family Problem Environment
#'
#' @examples
#' names(Parabola2D)
#' Parabola2D$name()
#' Parabola2D$describe()
#' Parabola2D$bitlength()
#' Parabola2D$genelength()
#' Parabola2D$lb()
#' Parabola2D$ub()
#' Parabola2D$f
#' Parabola2D$f(c(2.2, -1.37))
#' Parabola2D$solution()
#' Parabola2D$solution()$minimum
#' Parabola2D$solution()$minpoints
#' Parabola2D$solution()$maximum
#' Parabola2D$solution()$maxpoints
#' @importFrom xegaSelectGene Parabola2DFactory
#' @export
Parabola2D<-xegaSelectGene::Parabola2DFactory()
#' Problem environment for a 2-dimensional quadratic parabola.
#'
#' @description An example of a problem environment with an
#' early termination condition.
#'
#' @return A problem environment (see \link{Parabola2D}).
#' \code{Parabola2DEarly$terminate(solution, lF)}
#' is a test function which returns true if the \code{solution}
#' is in an epsilon environment of a known solution.
#' To invoke this function, use \code{xegaRun( ..., early=TRUE, ...)}.
#' The epsilon which determines
#' the length of the interval as a fraction
#' of the known optimal solution is configured by
#' e.g. \code{xegaRun( ..., terminationEps=0.001, ...)}.
#'
#' @family Problem Environment
#'
#' @importFrom xegaSelectGene Parabola2DEarlyFactory
#' @export
Parabola2DEarly<-xegaSelectGene::Parabola2DEarlyFactory()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.