View source: R/xegaDfScaleFactor.R
| CauchySF | R Documentation |
The scale factors is Cauchy distributed with
location parameter 1-0.6*t/T and
scale parameter 0.7-0.4(1-t/T)).
CauchySF(lF)
lF |
Local configuration. |
The parameters are constant functions defined in lF:
t is the current iteration
(lF$cGeneration).
T is the total number of generations
(lF$Generations).
The scale factor is bounded from above by 1.
For SF<0,
The scale factor is set to abs(rnorm(1, 0, 0.2)).
For details, see section 3 of Sharma et al. (2019), pp. 929-931 or Fan et al. (2017), pp. 6844-6845.
A scale factor.
Sharma, Prashant; Sharma, Harish; Kumar, Sandeep; Bansal, Jagdish Chand (2019): A Review on Scale Factor Strategies in Differential Evolution Algorithm. pp. 925-934. In: Bansal, Jagdish Chand et al. (2019) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, Vol. 817. Springer, Singapore, 2019. (ISBN:978-981-13-1594-7)
Fan, Qinqin; Yan, Xuefeng; Xue, Yu (2017) Prior knowledge guided differential evolution, Soft Computing 21(22), 6841 - 6858. (doi:10.1007/s00500-016-2235-6)
Other Scale Factor:
ConstScaleFactor(),
DETVSF(),
FitnessBasedSelfAdaptiveSF(),
RandomGaussianSF(),
UniformRandomScaleFactor(),
UniformRandomScaleFactorDERSF()
parm<-function(x){function() {return(x)}}
lF<-list()
lF$Generations<-parm(4)
lF$cGeneration<-parm(0)
CauchySF(lF)
lF$cGeneration<-parm(1)
CauchySF(lF)
lF$cGeneration<-parm(2)
CauchySF(lF)
lF$cGeneration<-parm(3)
CauchySF(lF)
lF$cGeneration<-parm(4)
CauchySF(lF)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.