| ExponentialMultiplicativeCooling | R Documentation |
The temperature at time k is the net present value
of the starting temperature. The discount factor
is lF$Alpha().
lF$Alpha() should be in [0, 1].
ExponentialMultiplicativeCooling(k, lF)
k |
Number of steps to discount. |
lF |
Local configuration. |
Temperature is updated at the end of each generation
in the main loop of the genetic algorithm.
lF$Temp0() is the starting temperature.
lF$Alpha() is the discount factor.
Temperature at time k.
Kirkpatrick, S., Gelatt, C. D. J, and Vecchi, M. P. (1983): Optimization by Simulated Annealing. Science, 220(4598): 671-680. <doi:10.1126/science.220.4598.671>
Other Cooling:
ExponentialAdditiveCooling(),
LogarithmicMultiplicativeCooling(),
PowerAdditiveCooling(),
PowerMultiplicativeCooling(),
TrigonometricAdditiveCooling()
parm<-function(x){function() {return(x)}}
lF<-list(Temp0=parm(100), Alpha=parm(0.99))
ExponentialMultiplicativeCooling(0, lF)
ExponentialMultiplicativeCooling(2, lF)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.