Description Usage Arguments Details Value Examples
Probability mass function of the Zipf-Polylog distribution with parameters α and β. The support of the Zipf-Polylog distribution are the strictly positive integer numbers large or equal than one.
1 2 3 4 5 6 7 8 9  | dzipfpolylog(x, alpha, beta, log = FALSE, nSum = 1000)
pzipfpolylog(x, alpha, beta, log.p = FALSE, lower.tail = TRUE,
  nSum = 1000)
qzipfpolylog(p, alpha, beta, log.p = FALSE, lower.tail = TRUE,
  nSum = 1000)
rzipfpolylog(n, alpha, beta, nSum = 1000)
 | 
x | 
 Vector of positive integer values.  | 
alpha | 
 Value of the α parameter (α > 1 ).  | 
beta | 
 Value of the β parameter (β > 0 ).  | 
log, log.p | 
 Logical; if TRUE, probabilities p are given as log(p).  | 
nSum | 
 The number of terms used for computing the Polylogarithm function (Default = 1000).  | 
lower.tail | 
 Logical; if TRUE (default), probabilities are P[X ≤q x], otherwise, P[X > x].  | 
p | 
 Vector of probabilities.  | 
n | 
 Number of random values to return.  | 
The probability mass function at a positive integer value x of the Zipf-Polylog distribution with parameters α and β is computed as follows:
dzipfpolylog gives the probability mass function
1 2 3  | dzipfpolylog(1:10, 1.61, 0.98)
pzipfpolylog(1:10, 1.61, 0.98)
qzipfpolylog(0.8, 1.61, 0.98)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.