| zyp.trend.vector | R Documentation | 
Computes a prewhitened linear trend on a vector of data. The 'zyp' package allows you to use either Zhang's method, or the Yue Pilon method of computing nonlinear prewhitened trends.
zyp.trend.vector(y, x=1:length(y), method=c("zhang", "yuepilon"),
conf.intervals=TRUE, preserve.range.for.sig.test=FALSE)
zyp.zhang(y, x=1:length(y), conf.intervals=TRUE, preserve.range.for.sig.test=FALSE)
zyp.yuepilon(y, x=1:length(y), conf.intervals=TRUE, preserve.range.for.sig.test=FALSE)
| y | vector of input data. | 
| x | vector of time data (optional). | 
| method | the prewhitened trend method to use. | 
| conf.intervals | whether to compute a 95 percent confidence interval based on all possible slopes. | 
| preserve.range.for.sig.test | whether to re-inflate values by dividing by (1 - ac) following removal of autocorrelation prior to computation of significance. | 
This routine computes a prewhitened nonlinear trend on a vector of data, using either Zhang's (described in Wang and Swail, 2001) or Yue Pilon's (describe in Yue Pilon, 2002) method of prewhitening and Sen's slope, and use a Kendall test for significance.
A vector containing the trend and associated data.
| lbound | the lower bound of the trend's confidence interval. | 
| trend | the Sen's slope (trend) per unit time. | 
| trendp | the Sen's slope (trend) over the time period. | 
| ubound | the upper bound of the trend's confidence interval. | 
| tau | Kendall's tau statistic computed on the final detrended timeseries. | 
| sig | Kendall's P-value computed for the final detrended timeseries. | 
| nruns | the number of runs required to converge upon a trend. | 
| autocor | the autocorrelation of the final detrended timeseries. | 
| valid_frac | the fraction of the data which is valid (not NA) once autocorrelation is removed. | 
| linear | the least squares fit trend on the same dat. | 
| intercept | the intercept of the Sen's slope (trend). | 
| lbound_intercept | the lower bound of the estimate of the intercept of the Sen's slope (trend). | 
| ubound_intercept | the upper bound of the estimate of the intercept of the Sen's slope (trend). | 
zyp.trend.csv, zyp-package, confint.zyp, zyp.sen.
# Without confidence intervals, using the wrapper routine
d <- zyp.trend.vector(c(0, 1, 3, 4, 2, 5), conf.intervals=FALSE)
# With confidence intervals, using the wrapper routine
d <- zyp.trend.vector(c(0, 1, 3, 4, 2, 5))
# With confidence intervals, not using the wrapper routine
d.zhang <- zyp.zhang(c(0, 1, 3, 4, 2, 5))
d.yuepilon <- zyp.yuepilon(c(0, 1, 3, 4, 2, 5))
# With confidence intervals, with time data.
t.dat <- c(0, 0.3, 1, 3, 3.4, 6)
d <- zyp.trend.vector(c(0, 1, 3, 4, 2, 5), t.dat, method="yuepilon")
d.zhang <- zyp.zhang(c(0, 1, 3, 4, 2, 5), t.dat)
d.yuepilon <- zyp.yuepilon(c(0, 1, 3, 4, 2, 5), t.dat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.