tauWt | R Documentation |
MME estimates of binomial dispersion parameter tau (intra-cluster correlation).
tauWt(
fit,
subset.factor = NULL,
fit.only = TRUE,
iter.max = 12,
converge = 1e-06,
trace.it = FALSE
)
fit |
A glm object. |
subset.factor |
Factor for estimating phi by subset. Will be converted to a factor if it is not a factor. |
fit.only |
Return only the final fit? If FALSE, also returns the weights and tau estimates. |
iter.max |
Maximum number of iterations. |
converge |
Convergence criterion: difference between model degrees of freedom and Pearson's chi-square. Default 1e-6. |
trace.it |
Display print statements indicating progress |
Estimates binomial dispersion parameter \tau
by the method of
moments. Iteratively refits the model by the Williams procedure, weighting
the observations by 1 / \phi_{ij}
, where
\phi_{ij} = 1 + \tau_j(n_{ij} - 1)
,
j
indexes the subsets, and i
indexes the observations.
A list with the following elements.
fit
: the new model fit, updated by the estimated weights
weights
: vector of weights
phi
: vector of phi estimates
PF-package
Williams DA, 1982. Extra-binomial variation in logistic linear models. Applied Statistics 31:144-148.
Wedderburn RWM, 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61:439-447.
phiWt, RRor.
birdm.fit <- glm(cbind(y, n - y) ~ tx - 1, binomial, birdm)
RRor(tauWt(birdm.fit))
# 95% t intervals on 4 df
#
# PF
# PF LL UL
# 0.489 -0.578 0.835
#
# mu.hat LL UL
# txcon 0.737 0.944 0.320
# txvac 0.376 0.758 0.104
#
# binomial family only
# any link
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.