r i = {{i}}

{{i}}. Analysis for trait r traits[i]

model <- aov.lxt(traits[i], lines, testers, rep, data)

GCA effects for lines plot

barplot(model$GCA.le[, 1], col = "lightblue", las = 2, cex.names = 0.8,
        ylab = "GCA effects")

Mid parent heterosis increment plot

# Means

means <- docomp('mean', traits[i], c(lines, testers), data = data)
hhh <- means[!is.na(means[, lines]) & !is.na(means[, testers]), ]
line.means <- means[!is.na(means[, lines]) & is.na(means[, testers]), ]
test.means <- means[is.na(means[, lines]) & !is.na(means[, testers]), ]

# Colnames

colnames(line.means)[3] <- paste(lines, 'means', sep = "_")
colnames(test.means)[3] <- paste(testers, 'means', sep = "_")

# Merge data frames

hhh <- merge(hhh, line.means[, -2], by = lines)
hhh <- merge(hhh, test.means[, -1], by = testers)
hhh$het <- hhh[, 3] / (hhh[, 4] + hhh[, 5]) * 200 - 100

# Graph

barplot(hhh$het, col = "lightblue", las = 2, cex.names = 0.8,
        ylab = "Heterosis increment (%)",
        names.arg = paste(hhh[, lines], hhh[, testers], sep = "-"))


AGROFIMS/hagrofims documentation built on May 6, 2020, 7:43 p.m.