r i = {{i}}
r traits[i]
model <- aov.lxt(traits[i], lines, testers, rep, data)
barplot(model$GCA.le[, 1], col = "lightblue", las = 2, cex.names = 0.8, ylab = "GCA effects")
# Means means <- docomp('mean', traits[i], c(lines, testers), data = data) hhh <- means[!is.na(means[, lines]) & !is.na(means[, testers]), ] line.means <- means[!is.na(means[, lines]) & is.na(means[, testers]), ] test.means <- means[is.na(means[, lines]) & !is.na(means[, testers]), ] # Colnames colnames(line.means)[3] <- paste(lines, 'means', sep = "_") colnames(test.means)[3] <- paste(testers, 'means', sep = "_") # Merge data frames hhh <- merge(hhh, line.means[, -2], by = lines) hhh <- merge(hhh, test.means[, -1], by = testers) hhh$het <- hhh[, 3] / (hhh[, 4] + hhh[, 5]) * 200 - 100 # Graph barplot(hhh$het, col = "lightblue", las = 2, cex.names = 0.8, ylab = "Heterosis increment (%)", names.arg = paste(hhh[, lines], hhh[, testers], sep = "-"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.