library(knitr) traits <- params$traits geno <- params$geno env <- params$env rep <- params$rep data <- params$data maxp <- params$maxp data[, geno] <- as.character(data[, geno]) data[, env] <- as.character(data[, env]) data[, rep] <- as.character(data[, rep])
The data frame has r nlevels(as.factor(data[, env]))
environments and r nlevels(as.factor(data[, geno]))
genotypes. In each environment the genotypes were evaluated using a randomized complete block design with r nlevels(as.factor(data[, rep]))
blocks. The statistical model is
$$
y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta){ij} + \gamma{k(j)} + \epsilon_{ijk}
$$
where
In this model we assume that the errors are independent and have a normal distribution with common variance, that is, $\epsilon_{ijk} \sim N(0,\sigma_{\epsilon}^2)$.
out <- NULL for (i in 1:length(traits)) { lc <- check.2f(traits[i], geno, env, rep, data) if (lc$c1 == 1 & lc$c2 == 1 & lc$c3 == 1 & lc$pmis <= maxp) out <- c(out, knit_expand('child_met.Rmd')) else out <- c(out, knit_expand('child_met_fail.Rmd')) }
r paste(knit(text = out), collapse = '\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.