library(knitr) traits <- params$traits geno <- params$geno rep <- params$rep data <- params$data maxp <- params$maxp data[, geno] <- as.character(data[, geno]) data[, rep] <- as.character(data[, rep])
There are data from r nlevels(as.factor(data[, geno]))
genotypes evaluated using a randomize complete block design with r nlevels(as.factor(data[, rep]))
blocks. The statistical model is
$$
y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}
$$
where
In this model we assume that the errors are independent and have a normal distribution with common variance, that is, $\epsilon_{ij} \sim N(0,\sigma_{\epsilon}^2)$.
out <- NULL for (i in 1:length(traits)) { lc <- check.rcbd(traits[i], geno, rep, data) if (lc$c1 == 1 & lc$c2 == 1 & lc$c3 == 1 & lc$pmis <= maxp) out <- c(out, knit_expand('child_rcbd.Rmd')) else out <- c(out, knit_expand('child_rcbd_fail.Rmd')) }
r paste(knit(text = out), collapse = '\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.