View source: R/multiscaleSVDxpts.R
orthogonalizeAndQSparsifyOld | R Documentation |
This implements a quantile based sparsification operation
orthogonalizeAndQSparsifyOld(
v,
sparsenessQuantile = 0.5,
positivity = "either",
orthogonalize = TRUE,
softThresholding = FALSE,
unitNorm = FALSE,
sparsenessAlg = NA
)
v |
input matrix |
sparsenessQuantile |
quantile to control sparseness - higher is sparser |
positivity |
restrict to positive or negative solution (beta) weights. choices are positive, negative or either as expressed as a string. |
orthogonalize |
run gram-schmidt if TRUE. |
softThresholding |
use soft thresholding |
unitNorm |
set each vector to unit norm |
sparsenessAlg |
NA is default otherwise basic, spmp or orthorank |
matrix
Avants BB
mat <- replicate(100, rnorm(20))
mat <- orthogonalizeAndQSparsify(mat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.