MDSV-package | R Documentation |
The MDSV package implements the Multifractal Discrete Stochastic Volatility developed in Augustyniak, et al. (2021).
This MDSV model is proposed as a generalization of other high dimensional hidden markov models such as, MSM of Calvet and Fisher (2004), CDRS of Fleming and Kirby (2013), DSARV of Cordis and Kirby (2014), FHMV of Augustyniak et al. (2019).
To make the computations faster MDSV uses C++
through the Rcpp package (Eddelbuettel et al., 2011).
Maintainer: Kassimou Abdoul Haki Maoude abdoulhaki.maoude@aiesec.net
Calvet, L. E. and Fisher, A. J. (2004). How to forecast long-run volatility: Regime switching and the estimation of multifractal processes. Journal of Financial Econometrics, 2(1):49-83. https://doi.org/10.1093/jjfinec/nbh003
Eddelbuettel, D., Fran?ois, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., ... & Bates, D., (2011).
Rcpp: Seamless R and C++
integration. Journal of Statistical Software, 40(8), 1-18.
https://www.jstatsoft.org/v40/i08/
Fleming, J., & Kirby, C. (2013). Component-driven regime-switching volatility. Journal of Financial Econometrics, 11(2), 263-301. https://doi.org/10.1093/jjfinec/nbs023
Cordis, A. S., & Kirby, C. (2014). Discrete stochastic autoregressive volatility. Journal of Banking & Finance, 43, 160-178. https://doi.org/10.1016/j.jbankfin.2014.03.020
Augustyniak, M., Bauwens, L., & Dufays, A. (2019). A new approach to volatility modeling: the factorial hidden Markov volatility model. Journal of Business & Economic Statistics, 37(4), 696-709. https://doi.org/10.1080/07350015.2017.1415910
Augustyniak, M., Dufays, A., & Maoude, K.H.A. (2021). Multifractal Discrete Stochastic Volatility.
For fitting MDSVfit
, filtering MDSVfilter
, bootstrap forecasting MDSVboot
and rolling estimation and forecast MDSVroll
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.