Description Usage Arguments Value Examples
@description Create a Network style plot displaying Variable and Variable Interaction.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | plotNet(
dinteraction,
model,
thresholdValue = 0,
label,
fitlimsInt = NULL,
fitlimsImp = NULL,
intPal = rev(sequential_hcl(palette = "Blues 3", n = 11)),
impPal = rev(sequential_hcl(palette = "Reds 3", n = 11)),
labelNudge = 0.05,
layout = "circle",
cluster = F,
clusterType = cluster_optimal,
clusterLayout = layout_with_fr,
...
)
|
thresholdValue |
A value chosen by the user which will show all the edges with weights (i.e., the interacions) above that value. For example, if thresholdValue = 0.2, then only the the interacions greater than 0.2 will be displayed. |
label |
If label = TRUE the numerical value for the interaction strength will be displayed. |
intPal |
A colorspace colour palette to display the interaction values. |
impPal |
A colorspace colour palette to display the importance values. |
labelNudge |
A value, set by the user, to determine the y_postioning of the variables names. A higher value will postion the label farther above the nodes. |
layout |
Determines the shape, or layout, of the plotted graph. |
cluster |
If cluster = TRUE, then the data is clustered in groups. |
clusterType |
= Network-based clustering. Any of the appropriate cluster types from the igraph package are allowed. |
clusterLayout |
= Determines the shape, or layout, of the clustered plotted graph. |
... |
Not currently implemented. |
mat |
A matrix of values to be plotted. Either added by the user or created using the prepFunc() function. |
minInt |
Minimum interaction strength to be displayed on the legend. |
maxInt |
Maximum interaction strength to be displayed on the legend. |
minImp |
Minimum importance value to be displayed on the legend. |
maxImp |
Maximum importance value to be displayed on the legend. |
A newtwork style plot displaying interaction strength between variables on the edges and variable importance on the nodes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Load in the data:
aq <- data.frame(airquality)
aq <- na.omit(aq)
# Run an mlr ranger model:
library(mlr3)
library(mlr3learners)
library(ranger)
aq_Task <- TaskRegr$new(id = "airQ", backend = aq, target = "Ozone")
aq_lrn <- lrn("regr.ranger", importance = "permutation")
aq_Mod <- aq_lrn$train(aq_Task)
# Create matrix
myMat <- vividMatrix(task = aq_Task, model = aq_Mod)
# Create plot:
plot(myMat, type = "network")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.