| exponential_smoothing_params | R Documentation | 
Tuning Parameters for Exponential Smoothing Models
seasonality_type() method() error_method()
The main parameters for Exponential Smoothing models are:
garch_order: Integer with the garch order.
arch_order: Integer with the arch_order.
mgarch_order: Integer with the mgarch order.
garch_t_student: A boolean value to specify for a generalized t-student garch model.
asymmetry: a string value for the asymmetric function for an asymmetric GARCH process. By default the
value "none" for standard GARCH process. If "logit" a logistic function is used for asymmetry, and if
"exp" an exponential function is used.
non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
markov_chains: The number of markov chains.
adapt_delta: The thin of the jumps in a HMC method
tree_depth: Maximum depth of the trees
A parameter
A parameter
A parameter
non_seasonal_ar() non_seasonal_differences() non_seasonal_ma()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.