An R wrapper for running the SigProfilerExtractor framework.
INTRODUCTION
The purpose of this document is to provide a guide for using the SigProfilerExtractor framework to extract the De Novo mutational signatures from a set of samples and decompose the De Novo signatures into the COSMIC signatures. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/t6j7u/wiki/home/. For users that prefer working in a Python environment, the tool is written in Python and can be found and installed from: https://github.com/AlexandrovLab/SigProfilerExtractor
PREREQUISITES
devtools (R)
>> install.packages("devtools")
reticulate* (R)
>> install.packages("reticulate")
*Reticulate has a known bug of preventing python print statements from flushing to standard out. As a result, some of the typical progress messages are delayed.
QUICK START GUIDE
This section will guide you through the minimum steps required to extract mutational signatures from genomes: 1. First, install the python package using pip. The R wrapper still requires the python package:
pip install SigProfilerExtractor
$ R
>> library(reticulate)
>> use_python("path_to_your_python")
>> py_config()
python: /anaconda3/bin/python
libpython: /anaconda3/lib/libpython3.6m.dylib
pythonhome: /anaconda3:/anaconda3
version: 3.6.5 |Anaconda, Inc.| (default, Apr 26 2018, 08:42:37) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]
numpy: /anaconda3/lib/python3.6/site-packages/numpy
numpy_version: 1.16.1
If you do not see your python path listed, restart your R session and rerun the above commands in order.
>>library(devtools)
>>install_github("AlexandrovLab/SigProfilerExtractorR")
>> library(SigProfilerExtractorR)
>> install("GRCh37", rsync=FALSE, bash=TRUE)
This will install the human 37 assembly as a reference genome.
SUPPORTED GENOMES
Other available reference genomes are GRCh38, mm9 and mm10 (and genomes supported SigProfilerMatrixGenerator. Information about supported will be found at https://github.com/AlexandrovLab/SigProfilerMatrixGeneratorR
Quick Example:
Signatures can be extracted from vcf files or tab delimited mutational table using the sigprofilerextractor function.
>> help(sigprofilerextractor)
This will show the details about the sigprofilerextractor funtion.
>> library(SigProfilerExtractorR)
>> path_to_example_data <- importdata("matrix")
>> data <- path_to_example_data # here you can provide the path of your own data
>> sigprofilerextractor("matrix",
"example_output",
data,
minimum_signatures=2,
maximum_signatures=3,
nmf_replicates=5,
min_nmf_iterations = 1000,
max_nmf_iterations =100000,
nmf_test_conv = 1000,
nmf_tolerance = 0.00000001)
The example file will generated in the working directory. Note that the parameters used in the above example are not optimal to get accurate signatures. Those are used only for a quick example.
The list of available functions are: - importdata - sigprofilerextractor - estimate_solution
Imports the path of example data.
importdata(datatype)
datatype: Type of example data. There are two types: 1. "vcf", 2. "matrix".
library(SigProfilerExtractorR)
path_to_example_table = importdata("matrix")
data = path_to_example_table
# This "data" variable can be used as a parameter of the "project" argument of the sigprofilerextractor function.
# To get help on the parameters and outputs of the "importdata" function, please use the following:
help(importdata)
Extracts mutational signatures from an array of samples.
sigprofilerextractor(input_type, output, input_data, reference_genome="GRCh37",
opportunity_genome = "GRCh37", context_type = "default",
exome = False, minimum_signatures=1, maximum_signatures=10,
nmf_replicates=100, resample = T, batch_size=1, cpu=-1,
gpu=F, nmf_init="random", precision= "single",
matrix_normalization= "gmm", seeds= "random",
min_nmf_iterations= 10000, max_nmf_iterations=1000000,
nmf_test_conv= 10000, nmf_tolerance= 1e-15,
nnls_add_penalty=0.05, nnls_remove_penalty=0.01,
initial_remove_penalty=0.05, get_all_signature_matrices= False)
| Category | Parameter | Variable Type | Parameter Description | | --------- | --------------------- | -------- |-------- | | Input Data | | | | | | input_type | String | The type of input:
library(SigProfilerExtractorR)
# to get input from vcf files.
path_to_example_folder_containing_vcf_files = importdata("vcf")
data = path_to_example_folder_containing_vcf_files # you can put the path to your folder containing the vcf samples.
sigprofilerextractor("vcf", "example_output", data, minimum_signatures=1, maximum_signatures=10)
# Wait untill the excecution is finished. The process may a couple of hours based on the size of the data.
# Check the current working directory for the "example_output" folder.
# to get input from table format (mutation catalog matrix)
path_to_example_table = importdata("matrix")
data = path_to_example_table # you can put the path to your tab delimited file containing the mutational catalog matrix/table
sigprofilerextractor("matrix", "example_output", data, opportunity_genome="GRCh38", minimum_signatures=1,maximum_signatures=10)
To learn about the output, please visit https://osf.io/t6j7u/wiki/home/
Estimate the optimum solution (rank) among different number of solutions (ranks).
estimate_solution(base_csvfile,
All_solution,
genomes,
output,
title,
stability,
min_stability,
combined_stability)
| Parameter | Variable Type | Parameter Description | | --------------------- | -------- |-------- | | base_csvfile | String | Default is "All_solutions_stat.csv". Path to a csv file that contains the statistics of all solutions. | | All_solution | String | Default is "All_Solutions". Path to a folder that contains the results of all solutions. | | genomes | String | Default is Samples.txt. Path to a tab delimilted file that contains the mutation counts for all genomes given to different mutation types. | | output | String | Default is "results". Path to the output folder. | | title | String | Default is "Selection_Plot". This sets the title of the selection_plot.pdf | | stability | Float | Default is 0.8. The cutoff thresh-hold of the average stability. Solutions with average stabilities below this thresh-hold will not be considered. | | min_stability | Float | Default is 0.2. The cutoff thresh-hold of the minimum stability. Solutions with minimum stabilities below this thresh-hold will not be considered. | | combined_stability | Float | Default is 1.0. The cutoff thresh-hold of the combined stability (sum of average and minimum stability). Solutions with combined stabilities below this thresh-hold will not be considered. |
estimate_solution(base_csvfile="All_solutions_stat.csv",
All_solution="All_Solutions",
genomes="Samples.txt",
output="results",
title="Selection_Plot",
stability=0.8,
min_stability=0.2,
combined_stability=1.25)
The files below will be generated in the output folder: | File Name | Description | | ----- | ----- | | All_solutions_stat.csv | A csv file that contains the statistics of all solutions. | | selection_plot.pdf | A plot that depict the Stability and Mean Sample Cosine Distance for different solutions. |
If CUDA out of memory exceptions occur, it will be necessary to reduce the number of CPU processes used (the cpu
parameter).
Islam SMA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, and Alexandrov LB (2022) Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genomics. doi: 10.1016/j.xgen.2022.100179.
This software and its documentation are copyright 2018 as a part of the sigProfiler project. The SigProfilerExtractor framework is free software and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Please address any queries or bug reports to Mark Barnes at mdbarnes@ucsd.edu or Marcos Díaz-Gay at mdiazgay@ucsd.edu.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.