#' Creates a table with crop-parameters to be used in the "model_eval_visitation_rate.R" function
#'
#' Create crop_parameter_table for estimating the dependence of yield on visitation rates
#' To estimate visitation rates we assume that visits should occur while the flowers are receptive,
#' and assuming 6 hr of daily pollinator activity
#'
#' @return returns a table with parameters to be used in "model_eval_visitation_rate.R" function
#'
#' Depends on curve_ovule_parameters.R function and evolution_ovules.R function
#'
#' @import tidyverse
#'
#' @references The number of days of flower receptivity is extracted from Garibaldi et al (2020) table 1.
#'
crop_parameter_table <- function(){
pollen_table <- visits_table_syn
flower_receptivity_table <- table_garibaldi2019 %>%
select(Crop_name,Days_flower_receptivity,`References for days of flower receptivity`) %>%
rename(references_flower_receptivity = `References for days of flower receptivity`)
list_crops_pollen <- pollen_table$Crop_name %>% unique()
ovule_parameters <- NULL
for(Crop.i in list_crops_pollen){
ovule_parameters <- bind_rows(ovule_parameters,curve_ovule_parameters(Crop.i, self = 0))
}
crop_parameters <- ovule_parameters %>% left_join(flower_receptivity_table,by ="Crop_name") %>%
filter(!is.na(Days_flower_receptivity)) %>%
mutate(target_visitation_rate = target_visits * 100/(Days_flower_receptivity*6),
optimal_visitation_rate = min_visits * 100/(Days_flower_receptivity*6))
return(crop_parameters)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.