Source: https://keras.rstudio.com/articles/examples/imdb_cnn.html

This example demonstrates the use of Convolution1D for text classification.

Gets to 0.89 test accuracy after 2 epochs. 90s/epoch on Intel i5 2.4Ghz CPU. 10s/epoch on Tesla K40 GPU.

Set parameters

library(keras)

# set parameters:
max_features   <- 5000
maxlen         <- 400
batch_size     <- 32
embedding_dims <- 50
filters        <- 250
kernel_size    <- 3
hidden_dims    <- 250
epochs         <- 2

Data Preparation

kerasR will download the data if not found.

# Keras load all data into a list with the following structure:
# List of 2
# $ train:List of 2
# ..$ x:List of 25000
# .. .. [list output truncated]
# .. ..- attr(*, "dim")= int 25000
# ..$ y: num [1:25000(1d)] 1 0 0 1 0 0 1 0 1 0 ...
# $ test :List of 2
# ..$ x:List of 25000
# .. .. [list output truncated]
# .. ..- attr(*, "dim")= int 25000
# ..$ y: num [1:25000(1d)] 1 1 1 1 1 0 0 0 1 1 ...
#
# The x data includes integer sequences, each integer is a word.
# The y data includes a set of integer labels (0 or 1).
# The num_words argument indicates that only the max_fetures most frequent
# words will be integerized. All other will be ignored.
# See help(dataset_imdb)

imdb <- dataset_imdb(num_words = max_features)
# pad the sequences, so they have all the same lenght
# this will conver our dataset into a matrix: each line is a review
# and each column a word on the sequence. 
# we pad the sequences with 0 to the left.
x_train <- imdb$train$x %>%
  pad_sequences(maxlen = maxlen)

x_test <- imdb$test$x %>%
  pad_sequences(maxlen = maxlen)

Defining the Model

model <- keras_model_sequential()

model %>% 
  # we start off with an efficient embedding layer which maps
  # our vocab indices into embedding_dims dimensions
  layer_embedding(max_features, embedding_dims, input_length = maxlen) %>%
  layer_dropout(0.2) %>%
  # we add a Convolution1D, which will learn filters
  # word group filters of size filter_length:
  layer_conv_1d(
    filters, kernel_size, 
    padding = "valid", activation = "relu", strides = 1
  ) %>%
  # we use max pooling:
  layer_global_max_pooling_1d() %>%
  # We add a vanilla hidden layer:
  layer_dense(hidden_dims) %>%
  layer_dropout(0.2) %>%
  layer_activation("relu") %>%
  # We project onto a single unit output layer, and squash it with a sigmoid:
  layer_dense(1) %>%
  layer_activation("sigmoid")
model %>% 
    compile(loss = "binary_crossentropy",  
            optimizer = "adam",  
            metrics = "accuracy"
)

Training

# Training ----------------------------------------------------------------

model %>%
  fit(
    x_train, imdb$train$y,
    batch_size = batch_size,
    epochs = epochs,
    validation_data = list(x_test, imdb$test$y)
  )


AlfonsoRReyes/rDeepThought documentation built on May 3, 2019, 6:42 p.m.