Khan: Four tumors microarray data

Description Usage Format Details Source References Examples

Description

The Khan dataset consists of gene expression measurements, obtained using cDNA microarrays, of four types of pediatric small round blue cell tumors: the Ewing family of tumors (EW, 23 microarrays), Burkitt lymphomas (BL, 8 microarrays), neuroblastoma (NB, 12 microarrays) and rhabdomyosarcoma (RM, 20 microarrays). There is a total of 63 microarrays and an additional set of 25 microarys for testing purposes. It has 6,567 genes that were filtered to 2,308 genes in Khan et al. (2001). Here it is provided the filtered sample.

Usage

1
data("Khan")

Format

A data frame with 2308 observations on the following 88 variables.

TRAIN1.EW

a numeric vector

TRAIN2.EW

a numeric vector

TRAIN3.EW

a numeric vector

TRAIN4.EW

a numeric vector

TRAIN5.EW

a numeric vector

TRAIN6.EW

a numeric vector

TRAIN7.EW

a numeric vector

TRAIN8.EW

a numeric vector

TRAIN9.EW

a numeric vector

TRAIN10.EW

a numeric vector

TRAIN11.EW

a numeric vector

TRAIN12.EW

a numeric vector

TRAIN13.EW

a numeric vector

TRAIN14.EW

a numeric vector

TRAIN15.EW

a numeric vector

TRAIN16.EW

a numeric vector

TRAIN17.EW

a numeric vector

TRAIN18.EW

a numeric vector

TRAIN19.EW

a numeric vector

TRAIN20.EW

a numeric vector

TRAIN21.EW

a numeric vector

TRAIN22.EW

a numeric vector

TRAIN23.EW

a numeric vector

TRAIN24.BL

a numeric vector

TRAIN25.BL

a numeric vector

TRAIN26.BL

a numeric vector

TRAIN27.BL

a numeric vector

TRAIN28.BL

a numeric vector

TRAIN29.BL

a numeric vector

TRAIN30.BL

a numeric vector

TRAIN31.BL

a numeric vector

TRAIN32.NB

a numeric vector

TRAIN33.NB

a numeric vector

TRAIN34.NB

a numeric vector

TRAIN35.NB

a numeric vector

TRAIN36.NB

a numeric vector

TRAIN37.NB

a numeric vector

TRAIN38.NB

a numeric vector

TRAIN39.NB

a numeric vector

TRAIN40.NB

a numeric vector

TRAIN41.NB

a numeric vector

TRAIN42.NB

a numeric vector

TRAIN43.NB

a numeric vector

TRAIN44.RM

a numeric vector

TRAIN45.RM

a numeric vector

TRAIN46.RM

a numeric vector

TRAIN47.RM

a numeric vector

TRAIN48.RM

a numeric vector

TRAIN49.RM

a numeric vector

TRAIN50.RM

a numeric vector

TRAIN51.RM

a numeric vector

TRAIN52.RM

a numeric vector

TRAIN53.RM

a numeric vector

TRAIN54.RM

a numeric vector

TRAIN55.RM

a numeric vector

TRAIN56.RM

a numeric vector

TRAIN57.RM

a numeric vector

TRAIN58.RM

a numeric vector

TRAIN59.RM

a numeric vector

TRAIN60.RM

a numeric vector

TRAIN61.RM

a numeric vector

TRAIN62.RM

a numeric vector

TRAIN63.RM

a numeric vector

TEST64.NB

a numeric vector

TEST65.EW

a numeric vector

TEST66.NA

a numeric vector

TEST67.RM

a numeric vector

TEST68.NA

a numeric vector

TEST69.EW

a numeric vector

TEST70.BL

a numeric vector

TEST71.NB

a numeric vector

TEST72.NA

a numeric vector

TEST73.RM

a numeric vector

TEST74.NA

a numeric vector

TEST75.EW

a numeric vector

TEST76.NA

a numeric vector

TEST77.NB

a numeric vector

TEST78.BL

a numeric vector

TEST79.NB

a numeric vector

TEST80.RM

a numeric vector

TEST81.BL

a numeric vector

TEST82.EW

a numeric vector

TEST83.EW

a numeric vector

TEST84.EW

a numeric vector

TEST85.RM

a numeric vector

TEST86.NB

a numeric vector

TEST87.RM

a numeric vector

TEST88.NB

a numeric vector

Details

Variables:

Col. 1-23: TRAIN1.EW through TRAIN23.EW. Training set with tumor type EW.

Col. 24-31: TRAIN24.BL through TRAIN31.BL. Training set with tumor type EW.

Col. 32-43: TRAIN32.NB through TRAIN43.NB. . Training set with tumor type EW.

Col. 34-63: TRAIN44.RM through TRAIN63.RM. Training set with tumor type EW.

Col. 64-88: EST64.NB through TEST88.NB. Testing set.

Source

Own

References

Amaratunga D, Cabrera J, Shkedy Z. Exploration and analysis of DNA microarray and other high dimensional data. J. Wiley & Sons, 2014.

Khan J, Wei J, Ringner M, Saal L, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu C, Peterson C, and Meltzer P. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, v.7, pp.673-679, 2001.

Nieto-Reyes A, Cabrera J. Statistical depth based normalization and outlier detection of gene expression data. Preprint.

Examples

1
2
3
K=Khan[,1:63]
names(K)
outlier.detection(K,MS = TRUE)

AliciaNieto/fdaRNA documentation built on May 29, 2020, 11:58 a.m.