library(SME) library(knitr)
Discretization is the process of transforming a continuous-valued variable into a discrete one by creating a set of contiguous intervals (or equivalently a set of cutpoints) that spans the range of the variable's values.
There are diferent discretization methods, for example:
discretize(x, method = "frequency", num.bins)
A discretized vector or dataframe
v.example.1 <- c(11.5, 10.2, 1.2, 0.5, 5.3, 20.5, 8.4) v.example.2 <- c(0,4,12,16,16,18,24,26,28) df.example.3 <- data.frame(c(0,4,12), c(16,16,18), c(24,26,28)) matrix.example.4 <- matrix(c(0,4,12,16,16,18,24,26,28), 3, 3, byrow = FALSE )
ew.discretize.example1 <- discretize(v.example.1, method="interval", 4) print(ew.discretize.example1) ew.discretize.example2 <- discretize(v.example.2, method="interval", 3) print(ew.discretize.example2) ew.discretize.example3 <- discretize(df.example.3, method="interval", 3) kable(ew.discretize.example3) ew.discretize.example4 <- discretize(matrix.example.4, method="interval", 2) kable(ew.discretize.example4) ef.discretize.example1 <- discretize(v.example.1, method="frequency", 4) print(ef.discretize.example1) ef.discretize.example2 <- discretize(v.example.2, method="frequency", 3) print(ef.discretize.example2) ef.discretize.example3 <- discretize(df.example.3, method="frequency", 3) kable(ef.discretize.example3) ef.discretize.example4 <- discretize(matrix.example.4, method="frequency", 2) kable(ef.discretize.example4) clustering.discretize.example1 <- discretize(v.example.1, method="clustering", 4) print(clustering.discretize.example1) clustering.discretize.example2 <- discretize(v.example.2, method="clustering", 3) print(clustering.discretize.example2) clustering.discretize.example3 <- discretize(df.example.3, method="clustering", 3) kable(clustering.discretize.example3) clustering.discretize.example4 <- discretize(matrix.example.4, method="clustering", 2) kable(clustering.discretize.example4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.