knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
unitModalReg
: A Collection of Parametric Modal Regressions Models for Bounded DataThe goal of unitModalReg
is to provide tools for fitting parametric modal regression models
for bounded response variables.
You can install the development version from GitHub with:
# install.packages("remotes") remotes::install_github("AndrMenezes/unitModalReg")
The packages follows the structure of glm
objects. The main function is unitModalReg
.
library(unitModalReg) # Simulate data n <- 500 betas <- c(beta0 = 2, beta1 = -1, beta2 = 0.6) x1 <- runif(n) x2 <- rbinom(n, size = 1, prob = 0.65) eta <- betas[1] + betas[2] * x1 + betas[3] * x2 mu <- exp(eta) / exp(1 + eta) phi <- 4 y <- rugamma(n = n, mu = mu, phi = phi) data_sim <- data.frame(y = y, x1 = x1, x2 = factor(x2)) # Families of distributions distr <- list( Be = "betaMode", UGz = "unitGompertz", UGa = "unitGamma", Kum = "Kumaraswamy" ) # Fit the models fits <- lapply(distr, function(m) { unitModalReg(y ~ x1 + x2, data = data_sim, family = m, link = "logit") }) # Get the coefficients vapply(fits, coef, numeric(4))
We also implemented the gof
function to compare the models based on the information criterion (AIC, BIC and HQIC)
and Voung test for non-nested models.
# Compare the models fitting gof(lt = fits)
The currently methods implemented are
methods(class = "unitModalReg")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.