README.md

multgee: GEE Solver for Correlated Nominal or Ordinal Multinomial Responses

Github
version R-CMD-check Project Status: Active The project has reached a stable, usable state
and is being actively
developed.

CRAN
Version CRAN
Downloads CRAN
Downloads

Installation

You can install the release version of multgee:

install.packages("multgee")

The source code for the release version of multgee is available on CRAN at:

Or you can install the development version of multgee:

# install.packages('devtools')
devtools::install_github("AnestisTouloumis/multgee")

The source code for the development version of multgee is available on github at:

To use multgee, you should load the package as follows:

library("multgee")
#> Loading required package: gnm

Usage

This package provides a generalized estimating equations (GEE) solver for fitting marginal regression models with correlated nominal or ordinal multinomial responses based on a local odds ratios parameterization for the association structure (see Touloumis, Agresti and Kateri, 2013).

There are two core functions to fit GEE models for correlated multinomial responses:

The main arguments in both functions are:

The association structure among the correlated multinomial responses is expressed via marginalized local odds ratios (Touloumis et al., 2013). The estimating procedure for the local odds ratios can be summarized as follows: For each level pair of the repeated variable, the available responses are aggregated across clusters to form a square marginalized contingency table. Treating these tables as independent, an RC-G(1) type model is fitted in order to estimate the marginalized local odds ratios. The LORstr argument determines the form of the marginalized local odds ratios structure. Since the general RC-G(1) model is closely related to the family of association models, one can instead fit an association model to each of the marginalized contingency tables by setting LORem = "2way" in the core functions.

There are also five useful utility functions:

Example

The following R code replicates the GEE analysis presented in Touloumis et al. (2013).

data("arthritis")
intrinsic.pars(y, arthritis, id, time, rscale = "ordinal")
#> [1] 0.6517843 0.9097341 0.9022272

The intrinsic parameters do not differ much. This suggests that the uniform local odds ratios structure might be a good approximation for the association pattern.

fitord <- ordLORgee(formula = y ~ factor(time) + factor(trt) + factor(baseline),
    data = arthritis, id = id, repeated = time)
summary(fitord)
#> GEE FOR ORDINAL MULTINOMIAL RESPONSES 
#> version 1.6.0 modified 2017-07-10 
#> 
#> Link : Cumulative logit 
#> 
#> Local Odds Ratios:
#> Structure:         category.exch
#> Model:             3way
#> 
#> call:
#> ordLORgee(formula = y ~ factor(time) + factor(trt) + factor(baseline), 
#>     data = arthritis, id = id, repeated = time)
#> 
#> Summary of residuals:
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.5176739 -0.2380475 -0.0737290 -0.0001443 -0.0066846  0.9933154 
#> 
#> Number of Iterations: 6 
#> 
#> Coefficients:
#>                   Estimate   san.se   san.z Pr(>|san.z|)    
#> beta10            -1.84003  0.38735 -4.7504      < 2e-16 ***
#> beta20             0.27712  0.34841  0.7954      0.42639    
#> beta30             2.24779  0.36509  6.1568      < 2e-16 ***
#> beta40             4.54824  0.41994 10.8307      < 2e-16 ***
#> factor(time)3     -0.00079  0.12178 -0.0065      0.99485    
#> factor(time)5     -0.36050  0.11413 -3.1586      0.00159 ** 
#> factor(trt)2      -0.50463  0.16725 -3.0173      0.00255 ** 
#> factor(baseline)2 -0.70291  0.37861 -1.8565      0.06338 .  
#> factor(baseline)3 -1.27558  0.35066 -3.6376      0.00028 ***
#> factor(baseline)4 -2.65579  0.41039 -6.4714      < 2e-16 ***
#> factor(baseline)5 -3.99555  0.53246 -7.5040      < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Local Odds Ratios Estimates:
#>        [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9] [,10] [,11] [,12]
#>  [1,] 0.000 0.000 0.000 0.000 1.919 1.919 1.919 1.919 2.484 2.484 2.484 2.484
#>  [2,] 0.000 0.000 0.000 0.000 1.919 1.919 1.919 1.919 2.484 2.484 2.484 2.484
#>  [3,] 0.000 0.000 0.000 0.000 1.919 1.919 1.919 1.919 2.484 2.484 2.484 2.484
#>  [4,] 0.000 0.000 0.000 0.000 1.919 1.919 1.919 1.919 2.484 2.484 2.484 2.484
#>  [5,] 1.919 1.919 1.919 1.919 0.000 0.000 0.000 0.000 2.465 2.465 2.465 2.465
#>  [6,] 1.919 1.919 1.919 1.919 0.000 0.000 0.000 0.000 2.465 2.465 2.465 2.465
#>  [7,] 1.919 1.919 1.919 1.919 0.000 0.000 0.000 0.000 2.465 2.465 2.465 2.465
#>  [8,] 1.919 1.919 1.919 1.919 0.000 0.000 0.000 0.000 2.465 2.465 2.465 2.465
#>  [9,] 2.484 2.484 2.484 2.484 2.465 2.465 2.465 2.465 0.000 0.000 0.000 0.000
#> [10,] 2.484 2.484 2.484 2.484 2.465 2.465 2.465 2.465 0.000 0.000 0.000 0.000
#> [11,] 2.484 2.484 2.484 2.484 2.465 2.465 2.465 2.465 0.000 0.000 0.000 0.000
#> [12,] 2.484 2.484 2.484 2.484 2.465 2.465 2.465 2.465 0.000 0.000 0.000 0.000
#> 
#> p-value of Null model: < 0.0001

The 95% Wald confidence intervals for the regression parameters are

confint(fitord)
#>                        2.5 %      97.5 %
#> beta10            -2.5992134 -1.08084855
#> beta20            -0.4057572  0.95999854
#> beta30             1.5322296  2.96335073
#> beta40             3.7251701  5.37130863
#> factor(time)3     -0.2394781  0.23790571
#> factor(time)5     -0.5841988 -0.13680277
#> factor(trt)2      -0.8324304 -0.17683500
#> factor(baseline)2 -1.4449754  0.03916401
#> factor(baseline)3 -1.9628588 -0.58829522
#> factor(baseline)4 -3.4601391 -1.85143755
#> factor(baseline)5 -5.0391534 -2.95195213

To illustrate model comparison, consider another model with age and sex as additional covariates:

fitord1 <- update(fitord, formula = . ~ . + age + factor(sex))
waldts(fitord, fitord1)
#> Goodness of Fit based on the Wald test 
#> 
#> Model under H_0: y ~ factor(time) + factor(trt) + factor(baseline)
#> Model under H_1: y ~ factor(time) + factor(trt) + factor(baseline) + age + factor(sex)
#> 
#> Wald Statistic = 3.8313, df = 2, p-value = 0.1472
gee_criteria(fitord, fitord1)
#>              QIC      CIC     RJC   QICu Parameters
#> fitord  1268.444 1268.375 11.0347 1.2779         11
#> fitord1 1279.759 1279.582 13.0885 0.9964         13

According to the Wald test, there is no evidence of no difference between the two models. The QICu criterion suggest that fitord should be preferred over fitord1.

Getting help

The statistical methods implemented in multgee are described in Touloumis et al. (2013). A detailed description of the functionality of multgee can be found in Touloumis (2015). Note that an updated version of this paper also serves as a vignette:

browseVignettes("multgee")

How to cite

To cite 'multgee' in publications, please use:

  Touloumis A. (2015). "R Package multgee: A Generalized Estimating
  Equations Solver for Multinomial Responses." _Journal of Statistical
  Software_, *64*(8), 1-14.
  <https://www.jstatsoft.org/index.php/jss/article/view/v064i08>.

A BibTeX entry for LaTeX users is

  @Article{,
    title = {{R} Package {multgee}: A Generalized Estimating Equations Solver for Multinomial Responses},
    author = {{Touloumis A.}},
    journal = {Journal of Statistical Software},
    year = {2015},
    volume = {64},
    number = {8},
    pages = {1-14},
    url = {https://www.jstatsoft.org/index.php/jss/article/view/v064i08},
  }

To cite the methodology implemented in 'multgee' in publications,
please use:

  Touloumis A., Agresti A., Kateri M. (2013). "GEE for multinomial
  responses using a local odds ratios parameterization." _Biometrics_,
  *69*(3), 633-640. <https://doi.org/10.1111/biom.12054>.

A BibTeX entry for LaTeX users is

  @Article{,
    title = {GEE for multinomial responses using a local odds ratios parameterization},
    author = {{Touloumis A.} and {Agresti A.} and {Kateri M.}},
    journal = {Biometrics},
    year = {2013},
    volume = {69},
    number = {3},
    pages = {633-640},
    url = {https://doi.org/10.1111/biom.12054},
  }

References

Touloumis, A. (2015) [R Package multgee: A Generalized Estimating Equations Solver for Multinomial Responses](https://www.jstatsoft.org/v064/i08). *Journal of Statistical Software*, **64**, 1–14.
Touloumis, A., Agresti, A. and Kateri, M. (2013) [GEE for Multinomial Responses Using a Local Odds Ratios Parameterization](https://onlinelibrary.wiley.com/doi/10.1111/biom.12054/full). *Biometrics*, **69**, 633–640.


AnestisTouloumis/multgee documentation built on March 19, 2024, 9:55 p.m.