ic_reml_spt | R Documentation |
This function calculates the AIC and BIC for a model fitted in SpATS following the methodology proposed by Verbyla (2019).
ic_reml_spt(model, scale = 1, k = 2, label = "spats")
model |
A model fitted using SpATS. |
scale |
A scalar to scale the variance matrix of the estimated fixed effects (to ensure numerical stability of a log-determinant). Default value is 1. |
k |
An integer value to round ratios when identifying boundary variance parameters. Default value is 2. |
label |
A string to label the model. Default value is "spats". |
A data frame. The data frame has the following components
model
: the name of the models
loglik
: the full log-likelihood for each model
p
: the number of fixed effects parameters for each model
q
: the number of (non-zero) variance parameters for each model.
b
: the number of variance parameters that are fixed or on the
boundary. These parameters are not counted in the AIC or BIC.
AIC
: the AIC for each model
BIC
: the BIC for each model
logdet
: the log-determinant used in adjusting the residual
log-likelihood for each model
Johan Aparicio
Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models estimated using REML. Australian & New Zealand Journal of Statistics, 61(1), 39-50.
library(SpATS)
library(agriutilities)
data(wheatdata)
wheatdata$R <- as.factor(wheatdata$row)
wheatdata$C <- as.factor(wheatdata$col)
m1 <- SpATS(
response = "yield",
spatial = ~ PSANOVA(col, row, nseg = c(10, 20), nest.div = 2),
genotype = "geno",
genotype.as.random = TRUE,
fixed = ~ colcode + rowcode,
random = ~ R + C,
data = wheatdata,
control = list(tolerance = 1e-03, monitoring = 0)
)
m2 <- SpATS(
response = "yield",
spatial = ~ PSANOVA(col, row, nseg = c(10, 20), nest.div = 2),
genotype = "geno",
genotype.as.random = TRUE,
fixed = ~colcode,
random = ~ R + C,
data = wheatdata,
control = list(tolerance = 1e-03, monitoring = 0)
)
rbind.data.frame(
ic_reml_spt(m1, label = "colcode_rowcode"),
ic_reml_spt(m2, label = "colcode_no_rowcode")
)
rbind.data.frame(
h_cullis_spt(m1),
h_cullis_spt(m2)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.